CV
Academic Education
- Graduate Gemologist, Gemological Institute of America
- Doctor of Philosophy, Department of Geological Sciences, Brown University
- Master of Science, Department of Geological Sciences, Brown University
- Bachelor of Arts in Geology; Planetary & Space Sciences, Boston University
Positions
- Research Scientist, Institut für Planetologie, WWU Münster
- Research Scientist, Gemological Institute of America
Honors
- Angioletta Coradini Mid-Career Award – NASA’s Solar System Exploration Research Virtual Institute (SSERVI)
- Brown University Charles Wilson Brown Dissertation Fellowship – Brown University
- Amelia Earhart Fellowship – Zonta International
- NASA-Rhode Island Space Grant Graduate Student Fellowship – NASA-Rhode Island Space Grant
- Spectroscopy 2009 Best Poster Award – Conference on Micro-Raman Spectroscopy and Luminescence Studies in the Earth and Planetary Sciences
- Stephen E. Dwornik Planetary Geoscience Student Poster Award – Geological Society of America
- Stephen E. Dwornik Planetary Geoscience Student Paper Award – Geological Society of America
- Stephen E. Dwornik Planetary Geoscience Student Paper Award – Geological Society of America
- Boston University Department of Earth Sciences Excellence Award – Boston University Department of Earth Sciences
- Boston University Collegiate Excellence Award in Earth Sciences – Boston University
Projects
- Missionsunterstützende und wissenschaftliche Arbeiten mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) und Vorbereitung zukünftiger Mondmissionen ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OW2001 - Europlanet 2024 Research Infrastructure ( – )
EU-Project Hosted outside the University of Münster: EC H2020 - Research and innovation actions | Project Number: 871149 - Lunar Science und Exploration Consortium ( – )
Individual Granted Project: Sino-German Center for Research Promotion | Project Number: M-0016 - PLANMAP – PLANMAP - Planetary Mapping ( – )
EU-Project Hosted outside the University of Münster: EC H2020 - Research and innovation actions | Project Number: 776276 - Lunar Reconnaissance Orbiter Camera mission support and geological studies of the lunar surface ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OW1504 - Commercial ISRU Mission Preparation Phase ( – )
Individual Granted Project: OHB Italia SpA | Project Number: 2306/18/02 - LROC – LROC-Missionsupport ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50OW0901
- Missionsunterstützende und wissenschaftliche Arbeiten mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) und Vorbereitung zukünftiger Mondmissionen ( – )
Publications
- . . ‘Slopes along Apollo EVAs: Astronaut experience as input for future mission planning.’ Acta Astronautica 223: 184–196. doi: 10.1016/j.actaastro.2024.07.006.
- . . ‘Geologic History of the Amundsen Crater Region Near the Lunar South Pole: Basis for Future Exploration.’ The Planetary Science Journal 5, № 147. doi: 10.3847/PSJ/ad2c04.
- 10.1016/j.icarus.2022.115259. . ‘The young resurfacing events at Ceres' Occator crater: Seismic shaking or deposition of cryovolcanic material?’ Icarus 389. doi:
- 10.1016/j.pss.2023.105687. . ‘A comparative analysis of global lunar crater catalogs using OpenCraterTool – An open source tool to determine and compare crater size-frequency measurements.’ Planetary and Space Science 231: 105687. doi:
- 10.1016/j.pss.2022.105623. . ‘Possible sites for a Chinese International Lunar Research Station in the Lunar South Polar Region.’ Planetary and Space Science 227. doi:
- 10.1029/2022JE007533. . ‘Timing and Origin of Compressional Tectonism in Mare Tranquillitatis.’ Journal of Geophysical Research: Planets 128, № 2. doi:
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 14.’ Icarus 406. doi: 10.1016/j.icarus.2023.115732.
- 10.2138/rmg.2023.89.10. . ‘The Lunar Cratering Chronology.’ Reviews in Mineralogy and Geochemistry 89, № 1: 401–451. doi:
- . . ‘Catastrophic rupture of lunar rocks: Implications for lunar rock size–frequency distributions.’ Icarus 387: 115200. doi: 10.1016/j.icarus.2022.115200.
- . . ‘Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships.’ Journal of Geophysical Research 126: e2020JE006693. doi: 10.1029/2020JE006693.
- . . ‘China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials.’ Earth and Planetary Science Letters 561: 116855. doi: 10.1016/j.epsl.2021.116855.
- . . ‘Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum.’ Earth and Planetary Science Letters 555: 116702. doi: 10.1016/j.epsl.2020.116702.
- . . ‘Science-rich sites for in situ resource utilization characterization and end-to-end demonstration missions.’ The Planetary Science Journal 2: 84. doi: 10.3847/PSJ/abedbb.
- . . ‘The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history.’ The Planetary Science Journal 2: 79. doi: 10.3847/PSJ/abe419.
- . . ‘A Next Generation Lunar Orbiter Mission.’ Bulletin of the AAS 53, № 4. doi: 10.3847/25c2cfeb.8f28f012.
- . . ‘NanoSWARM: NanoSatellites for Space Weathering, Surface Water, Solar Wind, and Remnant Magnetism.’ Bulletin of the AAS 53, № 4. doi: 10.3847/25c2cfeb.314447c9.
- 10.1016/j.asr.2021.09.008. . ‘Prominent volcanic source of volatiles in the south polar region of the Moon.’ Advances in Space Research 68, № 11: 4691–4701. doi:
- . . ‘In Situ Geochronology for the Next Decade: Mission Designs for the Moon, Mars, and Vesta.’ The Planetary Science Journal 2: 145. doi: 10.3847/psj/abedbf.
- . . ‘Impact melt facies in the Moon's Crisium basin: Identifying, characterizing, and future radiometric dating.’ Journal of Geophysical Research 125: e2019JE006024. doi: 10.1029/2019JE006024.
- . . ‘Degradation of small simple and large complex lunar craters: Not a simple scale dependence.’ Journal of Geophysical Research 125: e2019JE006273. doi: 10.1029/2019JE006273.
- . . ‘Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon.’ Journal of Geophysical Research 125: e2019JE006212. doi: 10.1029/2019JE006212.
- . . ‘Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin?’ Icarus 338: 113430. doi: 10.1016/j.icarus.2019.113430.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 12.’ Icarus 2020: 113991. doi: 10.1016/j.icarus.2020.113991.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 11.’ Icarus 333: 528–547. doi: 10.1016/j.icarus.2019.06.020.
- . . ‘Lunar farside volcanism in and around the South Pole-Aitken basin.’ Icarus 299: 538–562. doi: 10.1016/j.icarus.2017.07.023.
- . . ‘Dating very young planetary surfaces from crater statistics: A review of issues and challenges.’ Meteoritics and Planetary Science 53: 554–582. doi: 10.1111/maps.12924.
- . . ‘Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon.’ Planetary and Space Science 162: 41–51. doi: 10.1016/j.pss.2017.05.006.
- . . ‘A new tool to account for crater obliteration effects in crater size-frequency distribution measurements.’ Earth and Space Science 5. doi: 10.1002/2018ea000383.
- . . ‘ The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event.’ Icarus 309: 45–60. doi: 10.1016/j.icarus.2018.02.030.
- . . ‘Ancient bombardment of the inner Solar System - Reinvestigation of the "fingerprints" of different impactor populations on the lunar surface.’ Journal of Geophysical Research: Planets 123: 748–762. doi: 10.1002/2017JE005451.
- . . ‘How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions.’ Icarus 306: 225–242. doi: 10.1016/j.icarus.2018.01.019.
- . . ‘Geologic history of the northern portion of the South Pole-Aitken basin on the Moon.’ Journal of Geophysical Research: Planets 123: 2585–2612. doi: 10.1029/2018JE005590.
- . . ‘Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon.’ Icarus 298: 78–88. doi: 10.1016/j.icarus.2017.08.017.
- . . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus 298: 49–63. doi: 10.1016/j.icarus.2016.11.040.
- . . ‘Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon.’ Icarus 298: 64–77. doi: 10.1016/j.icarus.2017.01.030.
- . . ‘Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps.’ Icarus 292: 111–124. doi: 10.1016/j.icarus.2016.12.034.
- 10.1016/j.icarus.2016.03.015. . ‘Crater size-frequency distribution measurements and age of the Compton-Belkovich volcanic complex.’ Icarus 273: 214–223. doi:
- . . ‘Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits.’ Icarus 273: 164–181. doi: 10.1016/j.icarus.2016.02.018.
- . . ‘The Lassell Massif - A silicic lunar volcano.’ Icarus 273: 248–261. doi: 10.1016/j.icarus.2015.12.036.
- . . ‘An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins.’ Icarus 273: 121–134. doi: 10.1016/j.icarus.2015.06.028.
Research Articles (Journals)
- . . ‘Small-scale lunar farside volcanism.’ Icarus 257: 336–354. doi: 10.1016/j.icarus.2015.04.040.
- 10.1016/j.pss.2015.05.007. . ‘Landing site selection for Luna-Glob mission in crater Boguslawsky.’ Planetary and Space Science 2015, № 117: 45–63. doi:
Research Article (Book Contributions)
- . ‘Lava tube.’ In Encyclopedia of Planetary Landforms, edited by , 7 pp.. Düsseldorf: Springer VDI Verlag.
- . ‘Lobate scarp.’ In Encyclopedia of Planetary Landforms, edited by , 11 pp.. Düsseldorf: Springer VDI Verlag.
- . ‘Impact melt pond.’ In Encyclopedia of Planetary Landforms, edited by , 13 pp.. Düsseldorf: Springer VDI Verlag.
- . . ‘Skylight.’ In Encyclopedia of Planetary Landforms, edited by , 7 pp.. Düsseldorf: Springer VDI Verlag.
- . ‘Pit crater.’ In Encyclopedia of Planetary Landforms, edited by , 8 pp.. Düsseldorf: Springer VDI Verlag.
- . ‘Boulder track.’ In Encyclopedia of Planetary Landforms, edited by , 8 pp.. Düsseldorf: Springer VDI Verlag.
- . . ‘Evidence for basaltic volcanism on the Moon within the past 100 millions years.’ Nature Geoscience 12 October. doi: 10.1038/ngeo2252.
- . . ‘Geology of the King crater region: New insights into impact melt dynamics on the Moon.’ Journal of Geophysical Research 117: E00H29. doi: 10.1029/2011JE003990.
- . . ‘Confirmation of sublunarean voids and thin layering in mare deposits.’ Planetary and Space Science 69, № 1: 18–27. doi: 10.1016/j.pss.2012.05.008.
- 10.1029/2011JE003935. . ‘How old are young lunar craters?’ Journal of Geophysical Research 117. doi:
- . . ‘Non-mare silicic volcanism on the lunar farside at Compton-Belkovich.’ Nature Geoscience 4, № 8: 566–571. doi: 10.1038/ngeo1212.
- . . ‘New insight into lunar impact melt mobility from the LRO camera.’ Geophysical Research Letters 37. doi: 10.1029/2010GL044666.
- . . ‘Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera.’ Science 329, № 5994: 936–940. doi: 10.1126/science.1189590.
- . . ‘Possible lunar lava tube skylight observed by SELENE cameras.’ Geophysical Research Letters 36. doi: 10.1029/2009GL040635.
- . . ‘Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1.’ Icarus 202, № 1: 336–353. doi: 10.1016/j.icarus.2009.02.007.
- . . ‘Gray-to-Blue-to-Violet Hydrogen-Rich Diamonds from the Argyle Mine, Australia.’ Gems and Gemology 45, № 1: 20–37.
- . . ‘Unusual gem pyroxmangite.’ Gems and Gemology 42, № 4: 266–267.
- . . ‘Diamond dyed rough.’ Gems and Gemology 41, № 3: 257–258.
- . . ‘Treated-color “golden” South Sea cultured pearls.’ Gems and Gemology 40: 331–332.
- . . ‘Impact-induced frictional melting in ordinary chondrites: A mechanism for deformation, darkening, and vein formation.’ Meteoritics and Planetary Science 38, № 10: 1521–1531.