Research areas
In order to advance our understanding of igneous processes on Earth and the other terrestrial planets, we simulate the formation of igneous and metamorphic rocks in the laboratory. Such experimental simulation presents a particular challenge, as it involves the simultaneous application of pressure and temperature in chemically complex and highly reactive systems. In our laboratories we focus on investigations of the Earth's interior and we mainly work on processes in the Earth's upper mantle and crust.
Experimental facilities located in our laboratory include apparatus designed to take natural and synthetic compositions to pressures and temperatures that are found in the Earth's crust and upper mantle. These facilities include end-loaded piston-cylinder apparatus (up to 4 GPa, 1800°C), a 1000t multi-anvil apparatus (up to 20 GPa, >2000°C), large volume box furnaces, and three vertical one atmosphere gas-mixing furnaces (1600°C). Further equipment in the high-pressure laboratories include several hydrothermal cold seal apparatus (0.4 GPa, 800°C) and numerous externally heated low-temperature autoclaves (200°C, <0.1 GPa). Associated auxiliary equipment includes welding apparatus, balances, polishing and cutting facilities, and several drying furnaces.Below some of the research topics we are addressing in our work:
Phase relations in the Earth's upper mantle
- High-pressure high-temperature experiments to investigate melting relations in fertile and depleted mantle compositions
- Thermodynamic modeling in realistic mantle compositions using free energy minimization techniques Perplex materials
- Redox effects on partial melting processes in the mantle
Physics and Chemistry of Minerals and Materials
- Thermodynamics of transition metal bearing oxides and silicates with applications to processes in the Earth's upper mantle
- Phase transitions in minerals at low temperatures, magnetic ordering, thermodynamics
Subduction zone processes and ore genesis
- Trace element transfer during melting and dehydration of subducted oceanic crust
- Mobility of refractory elements in melts and fluids (e.g. REE, Ti, Nb, Sn, Mo, W, etc) with applications to ore deposit formation in the crust. Some aspects of this research are part of the DFG SPP 2238 DOME
- Experimental simulations of subduction zone prozesses
- Genesis of carbonatites: Field work, experiments, and ore deposit modelling
- Metal solubility and metal complexation in hydrothermal fluids with applications to ore deposit formation in the crust (part of CMWS at DESY)
Experimental Planetary Science
- Experimental simulations of core formation
- Modelling core formation on Earth, Moon, and the rocky planets
- Experimental simulations of element fractionation during degassing of magmas
- Experimental investigations on the origin of lunar basalts
Teaching
- 2005-2007 Crystallography for Geologists
- 2005-2007 Igneous Petrology
- 2005-2007 Mineral Behaviour
- 2005-2007 Mineralogy
- 2005-2007 Field trip to NW-Scotland (Assynt, Sutherland)
- 2005-2007 Field trips in and around Edinburgh
- 2005-2007 Field trip to Cyprus
- seit 2008 Magmatische Petrologie
- seit 2008 Theoretische Petrologie
- seit 2008 Gesteinsbildende Minerale
- seit 2008 Baumaterial der Erde
- seit 2008 Exkursionen: Eifel, Zypern, Azoren
- seit 2008 Einführung in die Petrologie
- seit 2016 Lagerstättenkunde
Research Foci
- Experimental Petrology and Geochemistry
- In-situ trace element analysis
- Materialwissenschaften
- High Pressure Research
Academic Education
- PhD at the Research School of Earth Sciences, Australian National University
Projects
- SPP 2238 - Subproject: Natural and experimental constraints on the behaviour of Re in the Earth’s crust: Part B - hydrothermal transport of Re and Mo-Re fractionation ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: KL 1368/18-1 - Stabilität von akzessorischen Mineralen in Silikatschmelzen ( – )
Own Resources Project - CRC TRR 170 - A05: Chronology of lunar crust formation and its relation to the age of the Moon ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/2 - CRC TRR 170 - B07: Experimental and isotopic investigations of volatile element loss during magma degassing ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/2 - Unraveling the formation of economic Cu, Mo and W deposits in the Earth's crust by hydrothermal supercritical hydrous fluids using in-situ X-ray Absorption and Fluorescence spectroscopy ( – )
Individual Granted Project: The Deutsche Elektronen-Synchrotron - A Research Centre of the Helmholtz Association | Project Number: 27781 - SPP 2238 - Subproject: Experimental studies on Mo mobility in high-pressure high-temperature fluids of complex compositions ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: KL 1368/13-1 - Spurenelementverteilung zwischen akzessorischen Mineralen und Silikat- und Karbonatschmelzen ( – )
Own Resources Project - REESources – REESources: experimental investigation of the role of fluids in the formation of rare metals ore deposits ( – )
EU-Project Hosted at University the of Münster: EC H2020 - Marie Skłodowska-Curie Actions - Individual Fellowship | Project Number: 797145 - SalFluMa – Saline Fluids in the Mantle - Experimental Investigation of Their Role in Diamond Formation and Kimberlite Magmatism ( – )
EU-Project Hosted at University the of Münster: EC H2020 - Marie Skłodowska-Curie Actions - Individual Fellowship | Project Number: 746518 - CRC TRR 170 - B04: The atmo- and hydrophile element (H and halogens) inventory of the Earth and Moon ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/1 - CRC TRR 170 - B02: Stable isotope fractionation of S, Te and Pd and the roles of core formation and late accretion on siderophile volatile elements in the Earth ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/1 - Glimmer im Erdmantel - Charakterisierung von aussergewöhnlich stark überprägten Erdmantelxenolithen ( – )
Own Resources Project - Aufbau einer Hydrothermalzelle für die Untersuchung von Elementtransportprozessen in geologischen und chemischen Systemen mittels Röntgenfluoreszenzspektroskopie an der Strahllinie P64/65 an PETRA III ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 05K16PMA - Elementfraktionierung während Entgasungsprozessen in magmatischen Systemen ( – )
Own Resources Project - Perovskit in kimberlitischen Schmelzen ( – )
Own Resources Project - Petrology and geochemistry of composite mantle xenoliths ( – )
participations in other joint project: German Academic Exchange Service | Project Number: 5716281 - Halogens in the Earth's mantle: Concentrations in nominally halogen-free mantle minerals and element partitioning during partial melting ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: KL 1368/11-1 - Experimental constraints on majorite stability in the Earth's interior ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: KL 1368/8-1
- SPP 2238 - Subproject: Natural and experimental constraints on the behaviour of Re in the Earth’s crust: Part B - hydrothermal transport of Re and Mo-Re fractionation ( – )
Research Articles (Journals)
- . . ‘The origin of calcite in calc-silicate rocks from the Kokchetav ultrahigh pressure metamorphic сomplex.’ Journal of Metamorphic Geology 42, № 2: 143–170. doi: 10.1111/jmg.12749.
- . . ‘Fluorine abundance of the lunar magma ocean constrained by experimentally determined mineral-melt F partitioning.’ Geochimica et Cosmochimica Acta 364: 89–99. doi: 10.1016/j.gca.2023.11.011.
- . . ‘Nickel isotope fractionation factors between silicate minerals and melt.’ Geochimica et Cosmochimica Acta 366: 221–236. doi: 10.1016/j.gca.2023.11.026.
- . . ‘Complexation of Zr and Hf in fluoride-rich hydrothermal aqueous fluids and its significance for high field strength element fractionation.’ Geochimica et Cosmochimica Acta 366: 167–181. doi: 10.1016/j.gca.2023.12.013.
- . . ‘Titanium-rich basaltic melts on the Moon modulated by reactive flow processes.’ Nature Geoscience 17, № 2. doi: 10.1038/s41561-023-01362-5.
- . . ‘The effect of oxygen fugacity on the evaporation of boron from aluminoborosilicate melt.’ European Journal of Mineralogy 36: 173–181. doi: 10.5194/ejm-36-173-2024.
- . . ‘Thermal Stability of F-rich Phlogopite and K-richterite during Partial Melting of Metasomatized Mantle Peridotite with Implications for Deep Earth Volatile Cycles.’ Journal of Geophysical Research - Solid Earth 129, № 3: e2023JB0. doi: 10.1029/2023JB028202.
- . . ‘Melt inclusions in spinel from a composite mantle xenolith .’ Chemie der Erde / Geochemistry 84: 126118. doi: 10.1016/j.chemer.2024.126118.
- . . ‘Trace element partitioning in the lunar magma ocean: an experimental study.’ Contributions to Mineralogy and Petrology 179: 45. doi: 10.1007/s00410-024-02118-z.
- . . ‘New insights on the formation of the polymetamorphic Felbertal tungsten deposit (Austria, Eastern Alps) revealed by CL, EPMA, and LA-ICP-MS investigation.’ Mineralium Deposita in press, № xxx. doi: 10.1007/s00126-024-01284-1.
- . . ‘Experimental Constraints on the Origin of the Lunar High-Ti Basalts.’ Journal of Geophysical Research: Planets 129, № 8: e2023JE008239. doi: 10.1029/2023JE008239.
- . . ‘Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.’ Journal of Geophysical Research: Planets 129, № 8: e2024JE0–e2024JE008483. doi: 10.1029/2024JE008483.
- . . ‘Quantification of evaporative loss of volatile metals from planetary cores and metal-rich planetesimals .’ Geochimica et Cosmochimica Acta 384: 93–110. doi: 10.1016/j.gca.2024.08.021.
- . . ‘Accretion and Core Formation of Earth-like Planets: Insights from Metal–Silicate Partitioning of Siderophile and Volatile Elements.’ Geosciences 14: 281. doi: 10.3390/geosciences14110281.
- . . ‘Tracer diffusion under a concentration gradient: A pathway for a consistent development of mobility databases in multicomponent alloys.’ Journal of Alloys and Compounds 930: 167301. doi: 10.1016/j.jallcom.2022.167301.
- . . ‘Investigation of the strongly shocked Viñales ordinary chondrite meteorite (L6) fall – Implications for fragmentation and collision dynamics.’ Icarus 390: 115326. doi: 10.1016/j.icarus.2022.115326.
- . . ‘The effect of COH fluids on partial melting of eclogite and lherzolite under moderately oxidizing and reducing conditions.’ Chemical Geology 121219. doi: 10.1016/j.chemgeo.2022.121219.
- . . ‘Preferential mobilisation of oxidised iron by slab-derived hydrous silicate melts.’ Geochemical Perspectives Letters 24: 43–47. doi: 10.7185/geochemlet.2304.
- . . ‘Reply to: Silica is unlikely to be soluble in upper crustal carbonatite melts.’ Nature Communications 14: 943. doi: 10.1038/s41467-023-35841-5.
- . . ‘A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.’ Icarus 396: 115498. doi: 10.1016/j.icarus.2023.115498.
- . . ‘Mantle metasomatism and refertilization beneath the SW margin of the São Francisco Craton, Brazil.’ Lithos 448-449: 107164. doi: 10.1016/j.lithos.2023.107164.
- . . ‘Experimental and petrological investigations into the origin of the lunar Chang'e 5 basalts.’ Icarus 402: 15625. doi: 10.1016/j.icarus.2023.115625.
- . . ‘Mineral chemistry from the Alfeu-I lamproite (Southern Brazil) and its contribution to understand the mantle heterogeneity under South American Plate during the Gondwana breakup.’ Brazilian Journal of Geology 53, № 3: e202200. doi: 10.1590/2317-4889202320220092 .
- . . ‘Fast REE re-distribution in mantle clinopyroxene via reactive melt infiltration.’ Geochemical Perspectives Letters 26: 40–44. doi: 10.7185/geochemlet.2323.
- . . ‘Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions.’ Icarus 405: 115699. doi: 10.1016/j.icarus.2023.115699.
- . . ‘The origin of Na-alkaline lavas revisited: new constraints from experimental melting of amphibole-rich metasomes + lherzolite at uppermost mantle pressure.’ Contributions to Mineralogy and Petrology 178: 73. doi: 10.1007/s00410-023-02052-6.
- . . ‘Evaporation of moderately volatile elements from metal and sulfide melts: implications for volatile element abundances in magmatic iron meteorites.’ Earth and Planetary Science Letters 622, № 118406. doi: 10.1016/j.epsl.2023.118406.
- . . ‘Petrological and geochemical evidence for a hot crystallization path and a recharge filtering bypass at Antimilos, Milos volcanic field, Greece.’ Contributions to Mineralogy and Petrology 178: 82. doi: 10.1007/s00410-023-02067-z.
- . . ‘Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.’ Journal of Geophysical Research: Planets 128, № 12: e2023JE0. doi: 10.1029/2023JE007895.
- . . ‘The Fe(Ni)–C–N‑phase diagram at 10 GPa—implications for nitrogen and carbon storage in the deep mantle.’ Contributions to Mineralogy and Petrology 179, № 3: 1–14. doi: 10.1007/s00410-023-02084-y.
- . . ‘Sulfur solubility in a deep magma ocean and implications for the deep sulfur cycle.’ Geochemical Perspectives Letters 22: 5–9. doi: 10.7185/geochemlet.2219.
- . . ‘Experimental constraints on the long-lived radiogenic isotope evolution of the Moon.’ Geochimica et Cosmochimica Acta 326: 119–148. doi: 10.1016/j.gca.2022.04.008.
- . . ‘Synthesis of large amounts of volatile element-bearing silicate glasses using a two-stage melting process.’ ACS Earth and Space Chemistry 6, № 4: 1108–1111. doi: 10.1021/acsearthspacechem.2c00020.
- . . ‘Empirical and Experimental Constraints on Fe-Ti Oxide-Melt Titanium Isotope Fractionation Factors.’ Geochimica et Cosmochimica Acta 326: 253–272. doi: 10.1016/j.gca.2022.02.011.
- . . ‘Rare-earth modified amorphous carbon films: effects of erbium and gadolinium on the structural evolution and mechanical properties.’ Diamond and Related Materials 123: 108898. doi: 10.1016/j.diamond.2022.108898.
- . . ‘Chlorine isotope behavior in subduction zone settings revealed by olivine-hosted melt inclusions from the Central America Volcanic Arc.’ Earth and Planetary Science Letters 581: 117414. doi: 10.1016/j.epsl.2022.117414.
- . . ‘Jadeite and related species in shocked meteorites: Limitations on inference of shock conditions.’ American Mineralogist 107, № 10: 1868–1877. doi: 10.2138/am-2022-8220.
- . . ‘Analysis of the CHARM Cu-alloy reference materials using excimer ns-LA-ICP-MS: assessment of matrix effects and applicability to artefact provenancing.’ Archaeometry 64, № 3: 655–670. doi: 10.1111/arcm.12729.
- . . ‘Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.’ Earth and Planetary Science Letters 593: 117647. doi: 10.1016/j.epsl.2022.117647.
- . . ‘Origin of carbonatites—liquid immiscibility caught in the act.’ Nature Communications 13, № 1: 2892. doi: 10.1038/s41467-022-30500-7.
- . . ‘The stability of antigorite in subduction zones revisited: The effect of F on antigorite stability and its breakdown reactions at high pressures and high temperatures, with implications for the geochemical cycles of halogens.’ Contributions to Mineralogy and Petrology 177: 70. doi: 10.1007/s00410-022-01934-5.
- ‘Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite.’ Geoscience Frontiers 13, № 5: 101429. doi: 10.1016/j.gsf.2022.101429. .
- . . ‘The effect of alkalinity on Ni–O bond length in silicate glasses: implications for Ni isotope geochemistry.’ Chemical Geology 610, № 5: 121070. doi: 10.1016/j.chemgeo.2022.121070.
- . . ‘Cr stable isotope fractionation by evaporation from silicate melts.’ Chemical Geology 610: 121096. doi: 10.1016/j.chemgeo.2022.121096.
- . . ‘Partitioning of Ru, Pd, Ag, Re, Pt, Ir and Au between sulfide-, metal- and silicate liquid at highly reduced conditions: implications for terrestrial accretion and aubrite parent body evolution.’ Geochimica et Cosmochimica Acta 336: 15–32. doi: 10.1016/j.gca.2022.08.021.
- . . ‘Textures induced by the coesite-stishovite transition and implications for the visibility of the X-discontinuity.’ Geochemistry, Geophysics, Geosystems 23, № 10: e2022GC010544. doi: 10.1029/2022GC010544.
- . . ‘Tellurium isotope fractionation during evaporation from silicate melts.’ Geochimica et Cosmochimica Acta 339: 35–45. doi: 10.1016/j.gca.2022.10.032.
- ‘High-pressure phase relations in the system Fe–Ni–Cu–S up to 14 GPa: implications for the stability of sulfides in the earth’s upper mantle.’ Contributions to Mineralogy and Petrology 177, № 10. doi: 10.1007/s00410-022-01966-x. .
- . . ‘Whole-rock trace element analyses via LA-ICP-MS in glasses produced by sodium borate flux fusion.’ Brazilian Journal of Geology 51, № 2: e20200057. doi: 10.1590/2317-4889202120200057.
- . . ‘Experimental investigation of Apollo 16 “Rusty Rock” formation by a lunar fumarolic gas.’ Journal of Geophysical Research: Planets 126: e2020JE006609. doi: 10.1029/2020JE006609.
- . . ‘Titanium-rich metasomatism in the lithospheric mantle beneath the Arkhangelsk Diamond Province, Russia – Insights from ilmenite-bearing xenoliths and HP-HT reaction experiments.’ Contributions to Mineralogy and Petrology 176, № 12: 101. doi: 10.1007/s00410-021-01863-9.
- . . ‘Experimental investigation of Ru isotope fractionation between metal, silicate and sulfide melts.’ Chemical Geology 580: 120384. doi: 10.1016/j.chemgeo.2021.120384.
- . . ‘Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments.’ Lithos 380-381: 105859. doi: 10.1016/j.lithos.2020.105859.
- . . ‘Partial melting and subduction-related metasomatism recorded by geochemical and isotope (He-Ne-Ar-Sr-Nd) compositions of spinel lherzolite xenoliths from Coyhaique, Chilean Patagonia.’ Gondwana Research 98: 257–276. doi: 10.1016/j.gr.2021.06.003.
- . . ‘A hydrothermal apparatus for X-ray absorption spectroscopy of hydrothermal fluids at DESY.’ Review of Scientific Instruments 92: 063903. doi: 10.1063/5.0044767.
- . . ‘How do secondary iron enrichments form within basaltic eucrites? An experimental approach.’ Meteoritics and Planetary Science 56, № 5: 911–928. doi: 10.1111/maps.13651.
- . . ‘Clarifying source assemblages and metasomatic agents for basaltic rocks in eastern Australia using olivine phenocryst compositions.’ Lithos 390–391: 106122. doi: 10.1016/j.lithos.2021.106122.
- . . ‘Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.’ Icarus 361: 114363. doi: 10.1016/j.icarus.2021.114363.
- . . ‘The brecciated texture of polymict eucrites: Petrographic investigations of unequilibrated meteorites from the Antarctic Yamato collection .’ Meteoritics and Planetary Science 55: 558–574. doi: 10.1111/maps.13453.
- . . ‘Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry - Illuminating melt-rock reactions in the lithospheric mantle.’ Lithos 352-353: 105282. doi: 10.1016/j.lithos.2019.105282.
- . . ‘Erratum: An improved electron microprobe method for the analysis of halogens in natural silicate glasses (Microscopy and Microanalysis (2020) 26:5 (857-866)).’ Microscopy and Microanalysis 26, № 5: 1076. doi: 10.1017/S1431927620024551.
- . . ‘Multi-stage introduction of precious and critical metals in pyrite: A case study from the Konos Hill and Pagoni Rachi porphyry/epithermal prospects, NE Greece.’ Minerals 10, № 9: 784. doi: 10.3390/min10090784.
- . . ‘Origin and redox conditions of the Rosário-6 alnöite of southern Brazil: implications for the state of the mantle during Gondwana breakup.’ Lithos 376-377: 105751. doi: 10.1016/j.lithos.2020.105751.
- . . ‘Trace element partitioning between pyrochlore, microlite, fersmite and silicate melts.’ Geochemical Transactions 21: 9. doi: 10.1186/s12932-020-00072-w.
- . . ‘An Improved Electron Microprobe Method for the Analysis of Halogens in Natural Silicate Glasses.’ Microscopy and Microanalysis 26: 1–10. doi: 10.1017/S1431927620013495.
- . . ‘Experimental constraints on metal transport in fumarolic gases.’ Journal of Volcanology and Geothermal Research 400: 106929. doi: 10.1016/j.jvolgeores.2020.106929.
- . . ‘Highly reduced accretion of the Earth by large impactors? Evidence from elemental partitioning between sulfide liquids and silicate melts at highly reduced conditions.’ Geochimica et Cosmochimica Acta 286: 248–268. doi: 10.1016/j.gca.2020.07.002.
- . . ‘The fate of sulfur and chalcophile elements during crystallization of the lunar magma ocean.’ Journal of Geophysical Research: Planets 125. doi: 10.1029/2019JE006328.
- . . ‘An experimental assessment of the chalcophile behavior of F, Cl, Br and I: Implications for the fate of halogens during planetary accretion and the formation of magmatic ore deposits.’ Geochimica et Cosmochimica Acta 273: 275–290. doi: 10.1016/j.gca.2020.01.006.
- . . ‘Addressing matrix effects for 193 nm excimer LA-ICP-MS analyses of Fe-rich sulfides and a new predictive model.’ Journal Of Analytic Atomic Spectrometry 35: 498–509. doi: 10.1039/C9JA00391F.
- . . ‘Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database.’ Icarus 335: 113391. doi: 10.1016/j.icarus.2019.113391.
- . . ‘An experimental assessment of the potential of sulfide saturation of the source regions of eucrites and angrites: Implications for asteroidal models of core formation, late accretion and volatile element depletions.’ Geochimica et Cosmochimica Acta 269: 39–62. doi: 10.1016/j.gca.2019.10.006.
- . . ‘A possible high-temperature origin of the Moon and its geochemical consequences.’ Earth and Planetary Science Letters 538: 116222. doi: 10.1016/j.epsl.2020.116222.
- . . ‘Ferric-ferrous iron ratios of experimental majoritic garnet and clinopyroxene as a function of oxygen fugacity.’ American Mineralogist 105: 1866–1874. doi: 10.2138/am-2020-7265.
- . . ‘Decomposition of single-source precursors under high-temperature high-pressure to access osmium-platinum refractory alloys.’ Journal of Alloys and Compounds 813: 152121. doi: 10.1016/j.jallcom.2019.152121.
- . . ‘Trace element partitioning between sulfide-, metal- and silicate melts at highly reduced conditions: Insights into the distribution of volatile elements during core formation in reduced bodies.’ Icarus 335: 113408. doi: 10.1016/j.icarus.2019.113408.
- . . ‘The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths .’ Geochimica et Cosmochimica Acta 266: 307–331. doi: 10.1016/j.gca.2019.04.024.
- . . ‘Trace Elements in Magnetite from the Pagoni Rachi Porphyry Prospect, NE Greece: Implications for Ore Genesis and Exploration.’ Minerals 9: 725. doi: 10.3390/min9120725.
- . . ‘Evaporation of moderately volatile elements from silicate melts: Experiments and theory.’ Geochimica et Cosmochimica Acta 260: 204–231. doi: 10.1016/j.gca.2019.06.021.
- . . ‘Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions.’ Chemical Geology 524: 1–10. doi: 10.1016/j.chemgeo.2019.04.031.
- . . ‘Santorini volcano as a potential Martian analogue: The Balos Cove Basalts.’ Icarus 325: 128–140. doi: 10.1016/j.icarus.2019.02.026.
- . . ‘Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.’ Icarus 324: 86–103. doi: 10.1016/j.icarus.2019.02.010.
- . . ‘Significant depletion of volatile elements in the mantle of asteroid Vesta due to core formation.’ Icarus 317: 669–681. doi: 10.1016/j.icarus.2018.08.020.
- . . ‘LA-ICP-MS analyses of Fe-rich alloys: quantification of matrix effects for 193 nm excimer laser systems.’ Journal of Analytic Atomic Spectrometry 34: 222–231. doi: 10.1039/C8JA00291F.
- . . ‘The effect of fluorine on the stability of wadsleyite: Implications for the nature and depths of the transition zone in the Earth’s mantle.’ Earth and Planetary Science Letters 482: 236–244. doi: 10.1016/j.epsl.2017.11.011.
- . . ‘High-pressure high-temperature tailoring of high entropy alloys for extreme environments.’ Journal of Alloys and Compounds 738: 491–500. doi: 10.1016/j.jallcom.2017.12.216.
- . . ‘First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system.’ IECMS Sciforum 1: 1–12. doi: 10.3390/IECMS2018-05450.
- . . ‘Geophysical source conditions for basaltic lava from Santorini volcano based on geochemical modeling.’ Lithos 316-317: 295–303. doi: 10.1016/j.lithos.2018.07.027.
- . . ‘Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths.’ Geochimica et Cosmochimica Acta 226: 192–205. doi: 10.1016/j.gca.2018.02.002.
- . . ‘Experimentally determined trace element partition coefficients between hibonite, melilite, spinel, and silicate melts.’ Data in Brief 21: 2447–2463. doi: 10.1016/j.dib.2018.10.100.
- ‘On the Color and Genesis of Prase (Green Quartz) and Amethyst from the Island of Serifos, Cyclades, Greece.’ Minerals 8, № 487. doi: 10.3390/min8110487. .
- . . ‘Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece.’ Minerals 8: 479. doi: 10.3390/min8110479.
- . . ‘Reflectance spectra of synthetic Fe-free ortho-and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces.’ Planetary and Space Science 159. doi: 10.1016/j.pss.2018.04.006.
- . . ‘Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements.’ Geochimica et Cosmochimica Acta 231: 130–156. doi: 10.1016/j.gca.2018.04.008.
- . . ‘Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation.’ Scientific Reports 8: 7053. doi: 10.1038/s41598-018-25505-6.
- . . ‘IR spectroscopy of synthetic glasses with Mercury surface composition: Analogs for remote sensing.’ Icarus 296: 123–138. doi: 10.1016/j.icarus.2017.05.024.
- . . ‘Phosphorus zoning as a recorder of crystal growth kinetics: application to second generation olivine in mantle xenoliths from the Cima Volcanic Field.’ Contributions to Mineralogy and Petrology 172: 58. doi: 10.1007/s00410-017-1376-7.
- . . ‘The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths.’ Precambrian Research 294: 15–32. doi: 10.1016/j.precamres.2017.03.008.
- . . ‘The storage capacity of fluorine in olivine and pyroxene under upper mantle conditions.’ Geochimica et Cosmochimica Acta 208: 160–170. doi: 10.1016/j.gca.2017.03.043.
- . . ‘Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.’ ACS Earth and Space Chemistry 2017. doi: 10.1021/acsearthspacechem.6b00016.
- . . ‘Thermo-elastic behavior of grossular garnet at high pressures and temperatures.’ American Mineralogist 102: 851–859. doi: 10.2138/am-2017-5855.
- . . ‘Lithospheric diamond formation as a consequence of methane-rich volatile flooding: An example from diamondiferous eclogite xenoliths of the Karelian craton (Finland).’ Geochimica et Cosmochimica Acta 206: 312–342. doi: 10.1016/j.gca.2017.03.014.
- . . ‘Experimental constraints on mantle metasomatism caused by silicate and carbonate melts.’ Lithos 282-283: 173–186. doi: 10.1016/j.lithos.2017.03.004.
- . . ‘The role of F-clinohumite in volatile recycling processes in subduction zones.’ Geology 45, № 5: 443–446. doi: 10.1130/G38788.1.
- . . ‘Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts.’ American Mineralogist 102: 860–866. doi: 10.2138/am-2017-5870.
- . . ‘Fluorine partitioning between eclogitic garnet, clinopyroxene, and melt at upper mantle conditions.’ Chemical Geology 437: 88–97. doi: 10.1016/j.chemgeo.2016.05.032.
- . . ‘Phosphorus zoning from secondary olivine in mantle xenolith from middle atlas mountains (Morocco, Africa): implications for crystal growth kinetics.’ Bulletin of the Geological Society of Greece 50: 1923–1932.
- . . ‘An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer.’ Contributions to Mineralogy and Petrology 171, № 50. doi: 10.1007/s00410-016-1255-7.
- . . ‘Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts.’ Contributions to Mineralogy and Petrology 2016, № 171: 21. doi: 10.1007/s00410-016-1227-y.
- . . ‘Application of thermodynamic modelling to natural mantle xenoliths: Examples of density variations and pressure-temperature evolution of the lithospheric mantle .’ Contributions to Mineralogy and Petrology 2016, № 171: 1–14. doi: 10.1007/s00410-016-1229-9.
- . . ‘Distribution of Halogens between Fluid and Apatite during fluid-mediated replacement processes.’ Geochimica et Cosmochimica Acta 170: 225–246. doi: 10.1016/j.gca.2015.08.023.
- . . ‘Experimental determination of trace element partition coefficients between spinel and silicate melt: The influence of chemical composition and oxygen fugacity.’ Contributions to Mineralogy and Petrology 69, № 4: 45–77. doi: 10.1007/s00410-015-1128-5.
- . . ‘Mineralogy of the Earth: Phase Transitions and Mineralogy of the Upper Mantle.’ Treatise on Geophysics 2nd Ed.: 7–31. doi: 10.1016/B978-0-444-53802-4.00052-X.
- . . ‘Thermodynamic and magnetic properties of knorringite garnet (Mg3Cr2Si3O12) based on low-temperature calorimetry and magnetic susceptibility measurements.’ Physics and Chemistry of Minerals 41: 341–346. doi: 10.1007/s00269-013-0653-x.
- . . ‘Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens.’ Journal of Geophysical Research - Solid Earth 119: 8223–8238. doi: 10.1002/2014JB011372.
- . . ‘Electrophoretic deposition of alumina, yttria, yttrium aluminium garnet and lutetium aluminium garnet.’ Journal of Materials Science 49: 6975–6985. doi: 10.1007/s10853-014-8403-0.
- . . ‘Erratum to: Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling.’ Contributions to Mineralogy and Petrology 168, № 2: 1036. doi: 10.1007/s00410-014-1036-0.
- . . ‘The stability of Fe-Ni carbides in the Earth's mantle: Evidence for a low Fe-Ni-C melt fraction in the deep mantle.’ Earth and Planetary Science Letters 388: 211–221. doi: 10.1016/j.epsl.2013.12.007.
- . . ‘Garnet and spinel in fertile and depleted mantle: Insights from thermodynamic modelling.’ Contributions to Mineralogy and Petrology 166, № 2: 411–421. doi: 10.1007/s00410-013-0882-5.
- . . ‘The influence of composition on the local structure around yttrium in quenched silicate melts - Insights from EXAFS.’ Chemical Geology 346: 3–13. doi: 10.1016/j.chemgeo.2012.09.017.
- . . ‘Trace element partitioning between perovskite and kimberlite to carbonatite melt: New experimental constraints.’ Chemical Geology 353: 132–139. doi: 10.1016/j.chemgeo.2012.03.025.
- . . ‘Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca5(PO4)3Cl) using the flux growth method.’ Chemistry Central Journal 7: 56. doi: 10.1186/1752-153X-7-56.
- . . ‘TOF-SIMS and electron microprobe investigations of zoned magmatic orthopyroxenes: First results of trace and minor element analysis with implications for diffusion modeling.’ American Mineralogist 97, № 4: 532–542. doi: 10.2138/am.2012.3893.
- . . ‘Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes.’ Earth and Planetary Science Letters 337-338: 1–9. doi: 10.1016/j.epsl.2012.05.003.
- . . ‘New thermodynamic data for CoTiO3, NiTiO3 and CoCO3 based on low-temperature calorimetric measurements.’ Chemistry Central Journal 5: 54. doi: 10.1186/1752-153X-5-54.
- . . ‘Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques.’ Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 269, № 24: 3067–3073. doi: 10.1016/j.nimb.2011.04.061.
- . . ‘Thermal history of Northwest Africa 5073-A coarse-grained Stannern-trend eucrite containing cm-sized pyroxenes and large zircon grains.’ Meteoritics and Planetary Science 46, № 11: 1754–1773. doi: 10.1111/j.1945-5100.2011.01265.x.
- . . ‘High-pressure Raman studies and heat capacity measurements on the MgSiO3 analogue CaIr0.5Pt0.5O3.’ Physics and Chemistry of Minerals 38, № 8: 631–637. doi: 10.1007/s00269-011-0435-2.
- . . ‘Trace element partitioning and boron isotope fractionation between mica and tourmaline.’ Canadian Mineralogist 49, № 1: 165–176. doi: 10.3749/canmin.49.1.165.
- . . ‘Nb-Ta fractionation by partial melting at the titanite-rutile transition.’ Contributions to Mineralogy and Petrology 161, № 1: 35–45. doi: 10.1007/s00410-010-0520-4.
- . . ‘Tuning of Structure, Morphology and Magnetism in Postperovskite Oxide Solid Solutions.’ Chemistry of Materials 23, № 1: 114–121. doi: 10.1021/cm102660q.
- . . ‘The thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures.’ American Mineralogist 95, № 11-12: 1708–1716. doi: 10.2138/am.2010.3410.
- . . ‘Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: An experimental investigation.’ Geology 38, № 4: 323–326. doi: 10.1130/G30753.1.
- . . ‘Experimental constraints on the evolution of iron and phosphorus-rich melts: experiments in the system CaO-MgO-Fe2O3-P2O5-SiO2-H2O-CO2.’ Journal of Mineralogical and Petrological Sciences 105, № 1: 1–8. doi: 10.2465/jmps.090311.
- . . ‘Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths.’ Lithos 112, № Lithos: 986–991. doi: 10.1016/j.lithos.2009.05.007.
- . . ‘The heat capacities and thermodynamic properties of NiAl2O4 and CoAl2O4 measured by adiabatic calorimetry from T = (4 to 400) K.’ Journal of Chemical Thermodynamics 41, № 7: 842–848. doi: 10.1016/j.jct.2009.01.014.
- . . ‘Rutile crystals as potential trace element and isotope mineral standards for microanalysis.’ Chemical Geology 261, № 3-4: 346–369. doi: 10.1016/j.chemgeo.2008.04.012.
- . . ‘Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium.’ Contributions to Mineralogy and Petrology 158, № 4: 485–504. doi: 10.1007/s00410-009-0393-6.
- . . ‘Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1,230 to 1,535 °C in the model system Na2O-CaO-MgO-Al2O3-SiO2.’ Contributions to Mineralogy and Petrology 157: 473–490. doi: 10.1007/s00410-008-0346-5.
- . . ‘Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses.’ Geostandards and Geoanalytical Research 32, № 1: 39–54. doi: 10.1111/j.1751-908X.2008.00873.x.
- . . ‘Low temperature neutron diffraction study of MgCr2O4 spinel.’ Journal of Physics-Condensed Matter 20, № 10: 20.
- . . ‘Experimental constraints on the behaviour of High Field Strength Elements in melts and fluids.’ Geochimica et Cosmochimica Acta 72, № 12: A482.
- . . ‘Experimental studies on rutile solubility in fluids and melts.’ Geochimica et Cosmochimica Acta 72, № 12: A776.
- . . ‘XANES study of the oxidation state of Cr in lower mantle phases: Periclase and magnesium silicate perovskite.’ American Mineralogist 92, № 5-6: 966–972.
- . . ‘Low-temperature heat capacities of MgAl2O4 and spinels of the MgCr2O4-MgAl2O4 solid solution.’ Physics and Chemistry of Minerals 34, № 2: 59–72. doi: 10.1007/s00269-006-0128-4.
- . . ‘The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the Moon.’ Chemical Geology 234, № 3-4: 251–263.
- . . ‘Rare earth element partitioning between titanite and silicate melts: Henry's law revisited.’ Geochimica et Cosmochimica Acta 70, № 19: 4997–5012. doi: 10.1016/j.gca.2006.07.016.
- . . ‘Trace element partitioning between apatite and silicate melts.’ Geochimica et Cosmochimica Acta 70, № 17: 4513–4527. doi: 10.1016/j.gca.2006.06.162.
- . . ‘1s2p resonant inelastic X-ray scattering of iron oxides.’ Journal of Physical Chemistry B 109, № 44: 20751–20762. doi: 10.1021/jp054006s.
- . . ‘Low-temperature heat capacity of magnesioferrite (MgFe2O4).’ Physics and Chemistry of Minerals 32, № 5-6: 374–378. doi: 10.1007/s00269-005-0003-8.
- . . ‘Thermodynamic properties of uvarovite garnet (Ca3Cr2Si3O12).’ American Mineralogist 90, № 4: 663–666. doi: 10.2138/am.2005.1812.
- . . ‘Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones.’ Geochimica et Cosmochimica Acta 69, № 9: 2361–2371. doi: 10.1016/j.gca.2004.11.015.
- . . ‘Effect of melt composition on the partitioning of trace elements between titanite and silicate melt.’ Geochimica et Cosmochimica Acta 69, № 3: 695–709. doi: 10.1016/j.gca.2004.06.037.
- . . ‘Hydrogen incorporation in orthopyroxene: interaction of different trivalent cations.’ Contributions to Mineralogy and Petrology 150, № 5: 473–485.
- . . ‘Evidence for fluoride melts in Earth's mantle formed by liquid immiscibility: Reply.’ Geology e77.
- . . ‘Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe) - evidence for metasomatic conditions of growth.’ Lithos 77, № 1-4: 181–192. doi: 10.1016/j.lithos.2004.04.002.
- . . ‘Evidence for fluoride melts in earth's mantle formed by liquid immiscibility.’ Geology 32, № 5: 441–444. doi: 10.1130/G20328.1.
- . . ‘The influence of Cr on the garnet-spinel transition in the Earth's mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling.’ Lithos 77, № 1-4: 639–646. doi: 10.1016/j.lithos.2004.03.017.
- . . ‘The entropy of zinc chromite (ZnCr2O4).’ Mineralogical Magazine 68, № 3: 515–522.
- . . ‘Alpha-recoil tracks in natural dark mica: Dating geological samples by optical and scanning force microscopy.’ Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 209: 351–356.
- . . ‘Trace-element partitioning between apatite and carbonatite melt.’ American Mineralogist 88, № 4: 639–646.
- . . ‘Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures.’ Chemical Geology 199, № 3-4: 233–242. doi: 10.1016/S0009-2541(03)00081-0.
- . . ‘Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures.’ American Mineralogist 88, № 1: 68–72.
- . . ‘Tetragonal low-temperature phase of MgCr2O4.’ Powder Diffraction 17, № 3: 230–233.
- . . ‘Experimental constraints on major and trace element partitioning during partial melting of eclogite.’ Geochimica et Cosmochimica Acta 66, № 17: 3109–3123. doi: 10.1016/S0016-7037(02)00859-1.
- . . ‘Thermodynamic properties of nickel chromite (NiCr2O4) based on adiabatic calorimetry at low temperatures.’ Physics and Chemistry of Minerals 29, № 10: 663–667.
- . . ‘The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic properties.’ American Mineralogist 85, № 11-12: 1686–1693.
- . . ‘The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling.’ Contributions to Mineralogy and Petrology 140, № 1: 84–98.
- . . ‘The near-solidus transition from garnet Iherzolite to spinel Iherzolite.’ Contributions to Mineralogy and Petrology 138, № 3: 237–248. doi: 10.1180/minmag.1998.62A.2.82.
- . . ‘The reaction MgCr2O4+SiO2=Cr2O3+MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4).’ Contributions to Mineralogy and Petrology 130, № 1: 59–65. doi: 10.1007/s004100050349.
- . . ‘Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper-mantle conditions.’ Earth and Planetary Science Letters 133, № 3-4: 439–448. doi: 10.1016/0012-821X(95)00098-W.