Dr. Jasper Berndt-Gerdes

Professur für Petrologie (Prof. Klemme)
Dr. Jasper Berndt-Gerdes

Corrensstr. 24, room 134
48149 Münster

T: +49 251 83-33049
F: +49 251 83-38397

  • Research Foci

    • In-situ dating techniques and trace element analysis using LA-ICP-MS
    • Electron microprobe analysis
    • Experimental petrology
  • CV

    Academic Education

    Doctoral degree at the Institut für Mineralogie, Universität Hannover, Germany: "Differentiation of MORB at 200 MPa: Experimental Techniques and Influence of H2O and fO2 on Phase Relations and Liquid Lines of Descent."
    Diplom, Institut für Mineralogie, Universität Hannover, Germany (equivalent to M.Sc.): "Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano"
    Study of geology at the Universität Hannover, Germany
    intermediate examination in geology (equivalent to B.Sc.)

    Positions

    Akademischer Oberrat Universität Münster, Institut für Mineralogie, Universität Münster
    Akademischer Rat Universität Münster, Institut für Mineralogie, Universität Münster
    Senior Scientist, Institut für Mineralogie, Universität Münster
  • Publications

    • , , , , , and . . “Nickel isotope fractionation factors between silicate minerals and melt.Geochimica et Cosmochimica Acta, 366: 221236. doi: 10.1016/j.gca.2023.11.026.
    • , , , , , , , and . . “Titanium-rich basaltic melts on the Moon modulated by reactive flow processes.Nature Geoscience, 17 (2) doi: 10.1038/s41561-023-01362-5.
    • , , , , and . . “The effect of oxygen fugacity on the evaporation of boron from aluminoborosilicate melt.European Journal of Mineralogy, 36: 173181. doi: 10.5194/ejm-36-173-2024.
    • , , , , , and . . “Thermal Stability of F-rich Phlogopite and K-richterite during Partial Melting of Metasomatized Mantle Peridotite with Implications for Deep Earth Volatile Cycles.Journal of Geophysical Research - Solid Earth, 129 (3): e2023JB0. doi: 10.1029/2023JB028202.
    • , , , , and . . “Melt inclusions in spinel from a composite mantle xenolith.Chemie der Erde / Geochemistry, 84: 126118. doi: 10.1016/j.chemer.2024.126118.
    • , , , , , , , , and . . “Trace element partitioning in the lunar magma ocean: an experimental study.Contributions to Mineralogy and Petrology, 179 45. doi: 10.1007/s00410-024-02118-z.
    • , , , , , , , , , and . . “New insights on the formation of the polymetamorphic Felbertal tungsten deposit (Austria, Eastern Alps) revealed by CL, EPMA, and LA-ICP-MS investigation.Mineralium Deposita, in press (xxx) doi: 10.1007/s00126-024-01284-1.
    • , , , , and . . “Experimental Constraints on the Origin of the Lunar High-Ti Basalts.Journal of Geophysical Research: Planets, 129 (8) e2023JE008239. doi: 10.1029/2023JE008239.
    • , , , , , , , and . . “Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.Journal of Geophysical Research: Planets, 129 (8): e2024JE0e2024JE008483. doi: 10.1029/2024JE008483.
    • , , and . . “Quantification of evaporative loss of volatile metals from planetary cores and metal-rich planetesimals.Geochimica et Cosmochimica Acta, 384: 93110. doi: 10.1016/j.gca.2024.08.021.
    • , and . . “The Late Cretaceous metamorphic rocks of the Akrotiri and Vari subunits on Tinos and Syros, Cyclades, Greece: field observations, geochemistry, and geochronology.Geological Magazine, 160 doi: 10.1017/S0016756824000219.
    • , , , and . . “Accretion and Core Formation of Earth-like Planets: Insights from Metal–Silicate Partitioning of Siderophile and Volatile Elements.Geosciences, 14: 281. doi: 10.3390/geosciences14110281.
    • , , , , , , and . . “The origin of calcite in calc-silicate rocks from the Kokchetav ultrahigh pressure metamorphic сomplex.Journal of Metamorphic Geology, 42 (2): 143170. doi: 10.1111/jmg.12749.
    • , , , and . . “Fluorine abundance of the lunar magma ocean constrained by experimentally determined mineral-melt F partitioning.Geochimica et Cosmochimica Acta, 364: 8999. doi: 10.1016/j.gca.2023.11.011.

    • , , , , , , and . . “Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.Journal of Geophysical Research: Planets, 128 (12): e2023JE0. doi: 10.1029/2023JE007895.
    • , , , , , , and . . “The Fe(Ni)–C–N‑phase diagram at 10 GPa—implications for nitrogen and carbon storage in the deep mantle.Contributions to Mineralogy and Petrology, 179 (3): 114. doi: 10.1007/s00410-023-02084-y.
    • , , , , , , and . . “Saint-Pierre-le-Viger (L5-6) from asteroid 2023 CX1 recovered in the Normandy, France—220 years after the historic fall of L'Aigle (L6 breccia) in the neighborhood.Meteoritics and Planetary Science, 58 (10): 13851398. doi: 10.1111/maps.14074.
    • , , , , , , , , , , , , and . . “Tracer diffusion under a concentration gradient: A pathway for a consistent development of mobility databases in multicomponent alloys.Journal of Alloys and Compounds, 930 167301. doi: 10.1016/j.jallcom.2022.167301.
    • , , , , , , , , and . . “Investigation of the strongly shocked Viñales ordinary chondrite meteorite (L6) fall – Implications for fragmentation and collision dynamics.Icarus, 390: 115326. doi: 10.1016/j.icarus.2022.115326.
    • , , , , , and . . “The effect of COH fluids on partial melting of eclogite and lherzolite under moderately oxidizing and reducing conditions.Chemical Geology, 121219 doi: 10.1016/j.chemgeo.2022.121219.
    • , , , , , and . . “Preferential mobilisation of oxidised iron by slab-derived hydrous silicate melts.Geochemical Perspectives Letters, 24: 4347. doi: 10.7185/geochemlet.2304.
    • , and . . “Reply to: Silica is unlikely to be soluble in upper crustal carbonatite melts.Nature Communications, 14: 943. doi: 10.1038/s41467-023-35841-5.
    • , , , , , , , , , , , and . . “Mantle metasomatism and refertilization beneath the SW margin of the São Francisco Craton, Brazil.Lithos, 448-449: 107164. doi: 10.1016/j.lithos.2023.107164.
    • , , , , , , and . . “Experimental and petrological investigations into the origin of the lunar Chang'e 5 basalts.Icarus, 402: 15625. doi: 10.1016/j.icarus.2023.115625.
    • , , , , , and . . “Mineral chemistry from the Alfeu-I lamproite (Southern Brazil) and its contribution to understand the mantle heterogeneity under South American Plate during the Gondwana breakup.Brazilian Journal of Geology, 53 (3): e202200. doi: 10.1590/2317-4889202320220092 .
    • , , , , and . “Refining the understanding of Cretaceous subduction zone processes in the central Indonesian region: the Bantimala Complex (SW Sulawesi) revisited.Journal of Asian Earth Sciences, 255 doi: 10.1016/j.jseaes.2023.105761.
    • , , , , , , and . . “Fast REE re-distribution in mantle clinopyroxene via reactive melt infiltration.Geochemical Perspectives Letters, 26: 4044. doi: 10.7185/geochemlet.2323.
    • , , , , , , , and . . “Internal differentiation and volatile budget of Mercury inferred from the partitioning of heat-producing elements at highly reduced conditions.Icarus, 405: 115699. doi: 10.1016/j.icarus.2023.115699.
    • , , , and . . “The origin of Na-alkaline lavas revisited: new constraints from experimental melting of amphibole-rich metasomes + lherzolite at uppermost mantle pressure.Contributions to Mineralogy and Petrology, 178: 73. doi: 10.1007/s00410-023-02052-6.
    • , , , and . . “Evaporation of moderately volatile elements from metal and sulfide melts: implications for volatile element abundances in magmatic iron meteorites.Earth and Planetary Science Letters, 622 (118406) doi: 10.1016/j.epsl.2023.118406.
    • , , , , , , and . . “Petrological and geochemical evidence for a hot crystallization path and a recharge filtering bypass at Antimilos, Milos volcanic field, Greece.Contributions to Mineralogy and Petrology, 178: 82. doi: 10.1007/s00410-023-02067-z.

    • , , , , , , , and . . “Experimental constraints on the long-lived radiogenic isotope evolution of the Moon.Geochimica et Cosmochimica Acta, 326: 119148. doi: 10.1016/j.gca.2022.04.008.
    • , , , , and . . “Synthesis of large amounts of volatile element-bearing silicate glasses using a two-stage melting process.ACS Earth and Space Chemistry, 6 (4): 11081111. doi: 10.1021/acsearthspacechem.2c00020.
    • , , , , and . . “Iron mobility in slab-derived hydrous silicate melts at sub-arc conditions.” contribution to the EGU 2022, Vienna
    • , , , , and . . “Iron-60 in the early Solar System revisited: insights from in situ isotope analysis of chondritic troilite.Astrophysical Journal, 929 (1): 107126. doi: 10.3847/1538-4357/ac5910.
    • , , , , , , , , , and . . “Rare-earth modified amorphous carbon films: effects of erbium and gadolinium on the structural evolution and mechanical properties.Diamond and Related Materials, 123: 108898. doi: 10.1016/j.diamond.2022.108898.
    • , , , , , , , and . . “Chlorine isotope behavior in subduction zone settings revealed by olivine-hosted melt inclusions from the Central America Volcanic Arc.Earth and Planetary Science Letters, 581: 117414. doi: 10.1016/j.epsl.2022.117414.
    • , , and . . “The Jurassic meta-ophiolitic rocks of Cape Steno, Andros, Greece: a high-pressure/low-temperature mélange with Pelagonian affinity in the Cycladic Blueschist Unit?International Journal of Earth Sciences, 111: 949968. doi: 10.1007/s00531-022-02161-w.
    • , , , , , , , , , and . . “Jadeite and related species in shocked meteorites: Limitations on inference of shock conditions.American Mineralogist, 107 (10): 18681877. doi: 10.2138/am-2022-8220.
    • , , , , and . . “Analysis of the CHARM Cu-alloy reference materials using excimer ns-LA-ICP-MS: assessment of matrix effects and applicability to artefact provenancing.Archaeometry, 64 (3): 655670. doi: 10.1111/arcm.12729.
    • , , , , , , and . . “Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.Earth and Planetary Science Letters, 593: 117647. doi: 10.1016/j.epsl.2022.117647.
    • , and . . “Origin of carbonatites—liquid immiscibility caught in the act.Nature Communications, 13 (1): 2892. doi: 10.1038/s41467-022-30500-7.
    • , , , , and . . “The stability of antigorite in subduction zones revisited: The effect of F on antigorite stability and its breakdown reactions at high pressures and high temperatures, with implications for the geochemical cycles of halogens.Contributions to Mineralogy and Petrology, 177: 70. doi: 10.1007/s00410-022-01934-5.
    • , , , , , , and . . “The magmatic and tectono-metamorphic history of the Sistan suture zone, Iran: New insights into a key region for the convergence between the Lut and Afghan blocks.Journal of Asian Earth Sciences, 2022 doi: 10.1016/j.jseaes.2022.105313.
    • , , , , , , , , , and . “Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite.Geoscience Frontiers, 13 (5) 101429. doi: 10.1016/j.gsf.2022.101429.
    • , , , , , , and . . “The effect of alkalinity on Ni–O bond length in silicate glasses: implications for Ni isotope geochemistry.Chemical Geology, 610 (5): 121070. doi: 10.1016/j.chemgeo.2022.121070.
    • , , , , , and . . “Cr stable isotope fractionation by evaporation from silicate melts.Chemical Geology, 610 121096. doi: 10.1016/j.chemgeo.2022.121096.
    • , , , , , , and . . “Partitioning of Ru, Pd, Ag, Re, Pt, Ir and Au between sulfide-, metal- and silicate liquid at highly reduced conditions: implications for terrestrial accretion and aubrite parent body evolution.Geochimica et Cosmochimica Acta, 336: 1532. doi: 10.1016/j.gca.2022.08.021.
    • , , , , and . “A well-rounded Zn-rich HAL-like CAI_Evidences for formation under variable redox conditions in a nebular gas with variable O-isotopic composition.” in Meteoritical and Planetary Science, Vol.6010 New York City: John Wiley & Sons.
    • , , , , and . “Mineralogy, petrology, and oxygen isotopic compositions of aluminum-rich chondrules from unequilibrated ordinary and the Dar al Gani 083 (CO3.1) chondrite.Geochimica et Cosmochimica Acta, 336: 448468. doi: 10.1016/j.gca.2022.08.026.
    • , , , , , , and . . “Tellurium isotope fractionation during evaporation from silicate melts.Geochimica et Cosmochimica Acta, 339: 3545. doi: 10.1016/j.gca.2022.10.032.
    • , , , , , and . “High-pressure phase relations in the system Fe–Ni–Cu–S up to 14 GPa: implications for the stability of sulfides in the earth’s upper mantle.Contributions to Mineralogy and Petrology, 177 (10) doi: 10.1007/s00410-022-01966-x.

    • , , and . . “Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments.Lithos, 380-381: 105859. doi: 10.1016/j.lithos.2020.105859.
    • , , , , and . . “Detrital zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia.Geological Magazine, 158 (3): 442458. doi: 10.1017/S0016756820000576.
    • , , , , , , , , , , and . . “Partial melting and subduction-related metasomatism recorded by geochemical and isotope (He-Ne-Ar-Sr-Nd) compositions of spinel lherzolite xenoliths from Coyhaique, Chilean Patagonia.Gondwana Research, 98: 257276. doi: 10.1016/j.gr.2021.06.003.
    • , , , , , , , , , , , , and . . “The Loongana (CL) group of carbonaceous chondrites.Geochimica et Cosmochimica Acta, 304: 131. doi: 10.1016/j.gca.2021.04.007.
    • , , , , , , and . . “Clarifying source assemblages and metasomatic agents for basaltic rocks in eastern Australia using olivine phenocryst compositions.Lithos, 390–391: 106122. doi: 10.1016/j.lithos.2021.106122.
    • , , , and . . “Unravelling metamorphic ages of suture zone rocks from the Sabzevar and Makran areas (Iran): robust age constraints for the larger Arabia-Eurasian collision zone.Journal of Metamorphic Geology, 39: 10991129. doi: 10.1111/jmg.12603.
    • , , , , , and . . “Identifying the components of Milos island subvolcanic plumbing system (South Aegean Volcanic Arc, Greece): An amphibole perspective.” contribution to the EGU, Vienna
    • , , , , , , , , , and . Forthcoming. “Kinetics of Fe-Ti oxide re-equilibration in magmatic systems: Implications for thermo-oxybarometry.Journal of Petrology, in press doi: 10.1093/petrology/egaa116.
    • , , , , , , , , , , , and . . “Sapphire-bearing magmatic rocks trace the boundary between paleo-continents: A case study of Ilmenogorsky alkaline complex, Uralian collision zone of {Russia}.Gondwana Research, in press doi: 10.1016/j.gr.2021.01.001.
    • , , , , , , , , , , , and . . “Mercury's Interior Structure Constrained by Density and P-Wave Velocity Measurements of Liquid Fe-Si-C Alloys.Journal of Geophysical Research: Planets, 126 (1): e2020JE006651. doi: 10.1029/2020JE006651.
    • , , , , , , and . . “Whole-rock trace element analyses via LA-ICP-MS in glasses produced by sodium borate flux fusion.Brazilian Journal of Geology, 51 (2): e20200057. doi: 10.1590/2317-4889202120200057.
    • , , , , , and . . “Titanium-rich metasomatism in the lithospheric mantle beneath the Arkhangelsk Diamond Province, Russia – Insights from ilmenite-bearing xenoliths and HP-HT reaction experiments.Contributions to Mineralogy and Petrology, 176 (12): 101. doi: 10.1007/s00410-021-01863-9.
    • , , , and . . “Hf-Nd isotopes from ultramafic and mafic rocks in the western Dharwar Craton, India, record early Archean mantle heterogeneity.Lithos, 404-405: 106491.
    • , , , , , , and . . “Brachiopods in early Mesozoic cryptic habitats: Continuous colonization, rapid adaptation, and wide geographic distribution.Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110668.
    • , , , and . . “Wet magmatic processes during the accretion of the deep crust of the Oman Ophiolite paleoridge: Phase diagrams and petrological records.Tectonophysics, 817: 229051.
    • , , , and . . “Melting of metasomatically enriched lithospheric mantle – Constraints from Pan-African monzonites (Damara Orogen, Namibia).Lithos, 398-399: 106332.
    • , , , , and . “On the petrogenesis of Paleoarchean continental crust: U-Pb-Hf isotope and major-trace element constraints from the Bastar Craton, India.Chemical Geology, 579: 120337. doi: 10.1016/j.chemgeo.2021.120337.
    • , , , , and . . “Experimental investigation of Ru isotope fractionation between metal, silicate and sulfide melts.Chemical Geology, 580: 120384. doi: 10.1016/j.chemgeo.2021.120384.

    • , , and . . “Permian–Triassic magmatism in response to Palaeotethys subduction and pre-Late Triassic arrival of northeast Gondwana-derived continental fragments at the southern Eurasian margin: Detrital zircon evidence from Triassic sandstones of Central Iran.Gondwana Research, Online doi: 10.1016/j.gr.2020.02.001.
    • , , and . . “Generation of a potassic to ultrapotassic alkaline complex in a syn-collisional setting through flat subduction: Constraints on magma sources and processes (Otjimbingwe alkaline complex, Damara orogen, Namibia).Gondwana Research, 82: 267287. doi: 10.1016/j.gr.2020.01.004.
    • , , , , and . . “Evolution of the Palaeotethys in the Eastern Mediterranean: a multi-method approach to unravel the age, provenance and tectonic setting of the Upper Palaeozoic Konya Complex and its Mesozoic cover sequence (south-central Turkey).International Geology Review, 62 (4): 389414. doi: 10.1080/00206814.2019.1616619.
    • , , , , , and . . “The missing link of Rodinia breakup in western South America: A petrographical, geochemical, and zircon Pb-Hf isotope study of the volcanosedimentary Chilla beds (Altiplano, Bolivia).Geosphere, 16 doi: 10.1130/GES02151.1.
    • , , , , , , , , and . . “Density of hydrous carbonate melts under pressure, compressibility of volatiles and implications for carbonate melt mobility in the upper mantle.Earth and Planetary Science Letters, 533: 116043.
    • , , , , and . . “Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry - Illuminating melt-rock reactions in the lithospheric mantle.Lithos, 352-353: 105282. doi: 10.1016/j.lithos.2019.105282.
    • , , , , , and . . “Initial 87Sr/86Sr as a sensitive tracer of Archaean crust-mantle evolution: Constraints from igneous and sedimentary rocks in the western Dharwar Craton, India.Precambrian Research, 337: 105523. doi: 10.1016/j.precamres.2019.105523.
    • , , , and . . “Petrogenesis of early syn-tectonic monzonite-granodiorite complexes – Crustal reprocessing versus crustal growth.Precambrian Research, 351: 105957.
    • , , , and . . “Crust-mantle interaction during syn-collisional magmatism – Evidence from the Oamikaub diorite and Neikhoes metagabbro (Damara orogen, Namibia).Precambrian Research, 351: 105955.
    • , , , , , , and . . “Erratum: An improved electron microprobe method for the analysis of halogens in natural silicate glasses (Microscopy and Microanalysis (2020) 26:5 (857-866)).Microscopy and Microanalysis, 26 (5): 1076. doi: 10.1017/S1431927620024551.
    • , , , , , , , and . . “Multi-stage introduction of precious and critical metals in pyrite: A case study from the Konos Hill and Pagoni Rachi porphyry/epithermal prospects, NE Greece.Minerals, 10 (9): 784. doi: 10.3390/min10090784.
    • , , , , , , and . . “Hf-W chronology of a macrochondrule from the L5/6 chondrite Northwest Africa 8192.Meteoritics and Planetary Science, 55 (10): 22412255. doi: 10.1111/maps.13571.
    • , , , , and . . “Origin and redox conditions of the Rosário-6 alnöite of southern Brazil: implications for the state of the mantle during Gondwana breakup.Lithos, 376-377: 105751. doi: 10.1016/j.lithos.2020.105751.
    • , and . . “Trace element partitioning between pyrochlore, microlite, fersmite and silicate melts.Geochemical Transactions, 21: 9. doi: 10.1186/s12932-020-00072-w.
    • , , , , , , and . . “An Improved Electron Microprobe Method for the Analysis of Halogens in Natural Silicate Glasses.Microscopy and Microanalysis, 26: 110. doi: 10.1017/S1431927620013495.
    • , , , , , and . . “The fate of sulfur and chalcophile elements during crystallization of the lunar magma ocean.Journal of Geophysical Research: Planets, 125 doi: 10.1029/2019JE006328.
    • , , , , , , and . . “An experimental assessment of the chalcophile behavior of F, Cl, Br and I: Implications for the fate of halogens during planetary accretion and the formation of magmatic ore deposits.Geochimica et Cosmochimica Acta, 273: 275290. doi: 10.1016/j.gca.2020.01.006.
    • , , , , , and . . “Addressing matrix effects for 193 nm excimer LA-ICP-MS analyses of Fe-rich sulfides and a new predictive model.Journal Of Analytic Atomic Spectrometry, 35: 498509. doi: 10.1039/C9JA00391F.
    • , , , , , , , and . . “Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database.Icarus, 335: 113391. doi: 10.1016/j.icarus.2019.113391.
    • , , , , , and . . “An experimental assessment of the potential of sulfide saturation of the source regions of eucrites and angrites: Implications for asteroidal models of core formation, late accretion and volatile element depletions.Geochimica et Cosmochimica Acta, 269: 3962. doi: 10.1016/j.gca.2019.10.006.
    • , , , , and . . “A possible high-temperature origin of the Moon and its geochemical consequences.Earth and Planetary Science Letters, 538: 116222. doi: 10.1016/j.epsl.2020.116222.
    • , , , , , and . . “Ferric-ferrous iron ratios of experimental majoritic garnet and clinopyroxene as a function of oxygen fugacity.American Mineralogist, 105: 18661874. doi: 10.2138/am-2020-7265.
    • , , , , , and . . “Provenance of Ordovician–Silurian and Carboniferous–Permian glaciogenic successions in Ethiopia revealed by detrital zircon U–Pb geochronology.Journal of the Geological Society, 177 (1): 141LP - 152DO - 10.1144/jgs2019-027.
    • , , , , and . . “Trace element partitioning between sulfide-, metal- and silicate melts at highly reduced conditions: Insights into the distribution of volatile elements during core formation in reduced bodies.Icarus, 335: 113408. doi: 10.1016/j.icarus.2019.113408.

    • , , , , , , and . . “The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths.Geochimica et Cosmochimica Acta, 266: 307331. doi: 10.1016/j.gca.2019.04.024.
    • , , , , , , , , , , , , , , , , , , , , , , and . “The Renchen L5-6 chondrite breccia – the first confirmed meteorite fall from Baden-Württemberg (Germany).Geochemistry – Chemie der Erde, 79: 125525. doi: 10.1016/j.chemer.2019.07.007.
    • , , , , , , , , , , and . . “Trace Elements in Magnetite from the Pagoni Rachi Porphyry Prospect, NE Greece: Implications for Ore Genesis and Exploration.Minerals, 9: 725. doi: 10.3390/min9120725.
    • , , , , , , , and . . “Microstructurally controlled trace element (Zr, U–Pb) concentrations in metamorphic rutile: An example from the amphibolites of the Bergen Arcs.Journal of Metamorphic Geology, n/a (n/a) doi: 10.1111/jmg.12514.
    • , , , , , , , , , , , , , , , , , , , , , , and . . “The Renchen L5-6 chondrite breccia – The first confirmed meteorite fall from Baden-Württemberg (Germany).Chemie der Erde / Geochemistry, Available online 27 July 2019 doi: 10.1016/j.chemer.2019.07.007.
    • , , , , and . . “Evaporation of moderately volatile elements from silicate melts: Experiments and theory.Geochimica et Cosmochimica Acta, 260: 204231. doi: 10.1016/j.gca.2019.06.021.
    • , , and . . “U–Pb zircon dating of Paleozoic volcanic rocks from the Rheno-Hercynian Zone: new age constraints for the Steinkopf formation, Lahn-Dill area, Germany.International Journal of Earth Sciences, 108(6): 18351855. doi: 10.1007/s00531-019-01736-4.
    • , , , and . . “Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions.Chemical Geology, 524: 110. doi: 10.1016/j.chemgeo.2019.04.031.
    • , , , , , , , , and . . “Corundum Anorthosites-Kyshtymites from the South Urals, Russia: A Combined Mineralogical, Geochemical, and U-Pb Zircon Geochronological Study.Minerals, 9 (4) doi: 10.3390/min9040234.
    • , , , , , , , , , , , , and . . “Santorini volcano as a potential Martian analogue: The Balos Cove Basalts.Icarus, 325: 128–140. doi: 10.1016/j.icarus.2019.02.026.
    • , , , , , , , and . “Born in the Pacific and raised in the Caribbean: construction of the Escambray nappe stack, central Cuba. A review.European Journal of Mineralogy, 31: 534. doi: 10.1127/ejm/2019/0031-2795.
    • , , , , , and . . “Geochronology and Zr-in-rutile thermometry of high-pressure/low-temperature metamorphic rocks from the Bantimala Complex, SW Sulawesi, Indonesia.Lithos, 324-325: 340355. doi: 10.1016/j.lithos.2018.11.020.
    • , , , , , , and . . “Age constraints on high-pressure/low-temperature metamorphism and sedimentation in the Luk Ulo Complex (Java, Indonesia).Lithos, 324-325: 747762. doi: 10.1016/j.lithos.2018.11.019.
    • , , , , , , , , and . . “Ubiquitous ultra-depleted domains in Earth’s mantle.Nature Geoscience, 12: 851–855. doi: 10.1038/s41561-019-0446-z.
    • , , , , , and . . “Significant depletion of volatile elements in the mantle of asteroid Vesta due to core formation.Icarus, 317: 669681. doi: 10.1016/j.icarus.2018.08.020.
    • , , , and . . “LA-ICP-MS analyses of Fe-rich alloys: quantification of matrix effects for 193 nm excimer laser systems.Journal of Analytic Atomic Spectrometry, 34: 222231. doi: 10.1039/C8JA00291F.

    • , , , , and . . “The effect of fluorine on the stability of wadsleyite: Implications for the nature and depths of the transition zone in the Earth’s mantle.Earth and Planetary Science Letters, 482: 236244. doi: 10.1016/j.epsl.2017.11.011.
    • , , , , and . . “Metamorphic petrology of a high-T/low-P granulite terrane (Damara belt, Namibia) – Constraints from pseudosection modelling and high-precision Lu-Hf garnet-whole rock dating.Journal of Metamorphic Geology, 00 (ja): 129. doi: 10.1111/jmg.12448.
    • , , , , , , , and . . “First zunyite-bearing lithocap in Greece: The case of Konos Hill Mo-Re-Cu-Au porphyry system.IECMS Sciforum, 1: 112. doi: 10.3390/IECMS2018-05450.
    • , , , , , and . . “Geophysical source conditions for basaltic lava from Santorini volcano based on geochemical modeling.Lithos, 316-317: 295303. doi: 10.1016/j.lithos.2018.07.027.
    • , , , , , and . . “Provenance and sedimentary processes controlling the formation of lower Cambrian quartz arenite along the southwestern margin of Baltica.Sedimentary Geology, 375 doi: 10.1016/j.sedgeo.2017.08.008.
    • , , , , and . . “Generation of syntectonic calc-alkaline, magnesian granites through remelting of pre-tectonic igneous sources – U-Pb zircon ages and Sr, Nd and Pb isotope data from the Donkerhoek granite (Southern Damara orogen, Namibia).Lithos, 310-311 doi: 10.1016/j.lithos.2018.04.020.
    • , , , , , , and . “Rutile R632 – A New Natural Reference Material for U‐Pb and Zr Determination.Geostandards and Geoanalytical Research, 1 doi: 10.1111/ggr.12213.
    • , , , , , , , and . . “Rare earth elements and Sm-Nd isotope redistribution in apatite and accessory minerals in retrogressed lower crust material (Bergen Arcs, Norway).Chemical Geology, 484: 120135.
    • , , , , and . “Metamorphic petrology of a high-T/low-P granulite terrane (Damara belt, Namibia) - Constraints from pseudosection modelling and high-precision Lu-Hf garnet-whole rock dating.Journal of Metamorphic Geology, 37: 4169. doi: 10.1111/jmg.12448.
    • , , , and . . “Experimentally determined trace element partition coefficients between hibonite, melilite, spinel, and silicate melts.Data in Brief, 21: 24472463. doi: 10.1016/j.dib.2018.10.100.
    • , , , , , , and . “On the Color and Genesis of Prase (Green Quartz) and Amethyst from the Island of Serifos, Cyclades, Greece.Minerals, 8 (487) doi: 10.3390/min8110487.
    • , , , , , , , , , , and . . “Mineralogical Study of the Advanced Argillic Alteration Zone at the Konos Hill Mo–Cu–Re–Au Porphyry Prospect, NE Greece.Minerals, 8: 479. doi: 10.3390/min8110479.
    • , , , , and . . “Provenance of the Surveyor Fan and Precursor Sediments in the Gulf of Alaska—Implications of a Combined U-Pb, (U-Th)/He, Hf, and Rare Earth Element Study of Detrital Zircons.Journal of Geology, 2018 (126) doi: 10.1086/699740.
    • , , , , , , , , and . . “Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements.Geochimica et Cosmochimica Acta, 231: 130156. doi: 10.1016/j.gca.2018.04.008.
    • , , , , , and . . “Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation.Scientific Reports, 8: 7053. doi: 10.1038/s41598-018-25505-6.

    • , , , , , , , , , , and . . “Famatinian inner arc: Petrographical observations and geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina).Journal of South American Earth Sciences, 79: 239253. doi: 10.1016/j.jsames.2017.08.010.
    • , , , , and . . “Cretaceous high-pressure metamorphism and low pressure overprint in the Sistan Suture Zone, eastern Iran: additional temperature estimates for eclogites, geological significance of U-Pb zircon ages and Rb-Sr constraints on the timing of exhumation.Journal of Asian Earth Sciences, 147: 332344. doi: 10.1016/j.jseaes.2017.07.051.
    • , , , , , and . . “Phosphorus zoning as a recorder of crystal growth kinetics: application to second generation olivine in mantle xenoliths from the Cima Volcanic Field.Contributions to Mineralogy and Petrology, 172: 58. doi: 10.1007/s00410-017-1376-7.
    • , , , , , and . . “The storage capacity of fluorine in olivine and pyroxene under upper mantle conditions.Geochimica et Cosmochimica Acta, 208: 160170. doi: 10.1016/j.gca.2017.03.043.
    • , , , and . . “Palaeotethys-related sediments of the Karaburun Peninsula, western Turkey: constraints on provenance and stratigraphy from detrital zircon geochronology.International Journal of Earth Sciences, online first: 126. doi: 10.1007/s00531-017-1458-9.
    • , , , , , , and . . “Phosphorus-rich pyroxene in mantle xenoliths.” contributed to the Goldschmidt Conference, Paris
    • , , , , and . . “Experimental constraints on mantle metasomatism caused by silicate and carbonate melts.Lithos, 282-283: 173186. doi: 10.1016/j.lithos.2017.03.004.
    • , , , , and . . “Geochemical and Nd-Sr-Pb isotope characteristics of synorogenic lower crust-derived granodiorites (Central Damara orogen, Namibia).Lithos, 274–275: 397411. doi: 10.1016/j.lithos.2016.12.033.
    • , , , , and . . “The role of F-clinohumite in volatile recycling processes in subduction zones.Geology, 45 (5): 443446. doi: 10.1130/G38788.1.
    • , , , , and . . “Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts.American Mineralogist, 102: 860866. doi: 10.2138/am-2017-5870.
    • , , , , , , and . . “The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.Scientific Reports, 7 doi: 10.1038/s41598-017-15203-0.
    • , , , , , , , and . . “The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body.Geochimica et Cosmochimica Acta, 212: 6283. doi: 10.1016/j.gca.2017.05.034.
    • , , , , and . . “A mineral and cumulate perspective to magma differentiation at Nisyros volcano, Aegean arc.Contributions to Mineralogy and Petrology, 172: 123. doi: 10.1007/s00410-017-1414-5.
    • , , , , and . . “A mineral and cumulate perspective to magma differentiation at Nisyros volcano, Aegean arc.Contributions to Mineralogy and Petrology, 172 (11): 95. doi: 10.1007/s00410-017-1414-5DO-10.1007/s00410-017-1414-5.
    • , , , , , , and . . “The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.Scientific Reports, 7: 14552. doi: 10.1038/s41598-017-15203-0.
    • , , , , and . . “Trace element inventory of meteoritic Ca-phosphates.American Mineralogist, 102 (9): 1856LP - 1880.
    • , , , and . . “The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body.Geochimica et Cosmochimica Acta, 212: 6283.

    • , , , , , and . . “Element Mobility and Behaviour of Zircon during HT Metasomatism of Ferroan Basic Granulite at Ayyarmalai, South India: Evidence for Polyphase Neoarchaean Crustal Growth and Multiple Metamorphism in the Northeastern Madurai Province.Journal of Petrology, 1-46 doi: 10.1093/petrology/egw057.
    • , , , and . . “The Cretaceous/Paleogene (K-Pg) boundary at the J Anomaly Ridge, Newfoundland (IODP Expedition 342, Hole U1403B).Meteoritics and Planetary Science, 1-16: n/a–n/a. doi: 10.1111/maps.12667.
    • , , and . “U-Pb dating of detrital zircons from Andros, Greece: Constraints for the time of sediment accumulation in the northern part of the Cycladic blueschist belt.Geological Journal, 51: 354367. doi: 10.1002/gj.2634.
    • , , , , , and . “Formation of mg-rich olivine pseudomorphs in serpentinized dunite from the Mesoarchean Nuasahi Massif, Eastern India: Insights into the evolution of fluid composition at the mineral-fluid interface.Journal of Petrology, 57 (1): 326. doi: 10.1093/petrology/egv070.
    • , , , , , , , , and . . “Phosphorus zoning from secondary olivine in mantle xenolith from middle atlas mountains (Morocco, Africa): implications for crystal growth kinetics.Bulletin of the Geological Society of Greece, 50: 19231932.
    • , , , , , , , , and . “Mafic magmatism in the Bakhuis Granulite Belt (western Suriname): relationship with charnockite magmatism and UHT metamorphism.GFF, 138 (1): 203218. doi: 10.1080/11035897.2015.1061591.
    • , and . “Provenance from zircon U-Pb age distributions in crustally contaminated granitoids.Sedimentary Geology, 336: 161170. doi: 10.1016/j.sedgeo.2015.08.006.
    • , , , , , , , , and . . “Mafic magmatism in the Bakhuis Granulite Belt (western Suriname): relationship with charnockite magmatism and UHT metamorphism.GFF, 138: 203218. doi: 10.1080/11035897.2015.1061591.
    • , , and . “The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina.Lithos, 256-257: 4154. doi: 10.1016/j.lithos.2016.03.018.
    • , , , and . . “Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts.Contributions to Mineralogy and Petrology, 2016 (171): 21. doi: 10.1007/s00410-016-1227-y.
    • , , , and . . “Maximum sedimentation ages and provenance of metasedimentary rocks from Tinos Island, Cycladic blueschist belt, Greece.International Journal of Earth Sciences, 105: 19231940. doi: 10.1007/s00531-015-1258-z.

    • , , , , , , , , and . “0.3 byr of drainage stability along the palaeozoic palaeo-pacific gondwana margin; a detrital zircon study.Journal of the Geological Society, 172 (2): 186200. doi: 10.1144/jgs2014-065.
    • , , , and . “Impact glass spherules in the Chicxulub K-Pg event bed at Beloc, Haiti: Alteration patterns.Meteoritics & Planetary Science, 50 (3): 418-432. doi: 10.1111/maps.12432.
    • , , , and . . “Experimental determination of trace element partition coefficients between spinel and silicate melt: The influence of chemical composition and oxygen fugacity.Contributions to Mineralogy and Petrology, 69 (4): 4577. doi: 10.1007/s00410-015-1128-5.
    • , , and . “Depositional ages of clastic metasediments from Samos and Syros, Greece: results of a detrital zircon study.International Journal of Earth Sciences, 104: 205220. doi: 10.1007/s00531-014-1058-x.
    • , , , , and . “Corrigendum to "Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite (TTG) suite from the Singhbhum craton, eastern India" [Precambrian Res. 252 (2014) 180-190].Precambrian Research, 260 (null): 161162. doi: 10.1016/j.precamres.2014.09.002.
    • , , , , , , and . “Application of redox sensitive proxies and carbonate clumped isotopes to Mesozoic and Palaeozoic radiaxial fibrous calcite cements.Chemical Geology, 417 (null): 306321. doi: 10.1016/j.chemgeo.2015.10.008.
    • , , , , , and . “Multi-method provenance model for early Paleozoic sedimentary basins of southern Peru and northern Bolivia (13°-18°S).Journal of South American Earth Sciences, 64 (null): 94115. doi: 10.1016/j.jsames.2015.08.013.
    • , , and . . “Formation and evolution of a Proterozoic magmatic arc: geochemical and geochronological constraints from meta-igneous rocks of the Ongole domain, Eastern Ghats Belt, India.Contributions to Mineralogy and Petrology, 169 (1) doi: 10.1007/s00410-014-1096-1.
    • , , , , and . . “Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite (TTG) suite from the Singhbhum craton, eastern India (vol 252, pg 180, 2014).Precambrian Research, 260: 161162. doi: 10.1016/j.precamres.2014.09.002.
    • , , , , and . “The basement of the Deccan Traps and its madagascar connection: Constraints from xenoliths.Journal of Geology, 123 (3): 295310. doi: 10.1086/682009.
    • , , , , , and . “Proto-India was a part of Rodinia: Evidence from Grenville-age suturing of the Eastern Ghats Province with the Paleoarchean Singhbhum Craton.Precambrian Research, 266 (null): 506529. doi: 10.1016/j.precamres.2015.05.030.
    • , , , , and . “Petrology of ferroan alkali-calcic granites: Synorogenic high-temperature melting of undepleted felsic lower crust (Damara orogen, Namibia).Lithos, null (null): 114125. doi: 10.1016/j.lithos.2015.03.004.
    • , , , and . . “Improved Background Correction for the Quantification of Actinide M-lines in EPMA.” contribution to the Microscopy & Microanalysis, Portland, Oregon, USA

    • , , , and . . “Comprehensive study of actinide reference materials for electron probe micro-analysis.” contribution to the Deutsche Mineralogische Gesellschaft, Jena
    • , , , , , and . . “Age and P-T evolution of the Neoproterozoic Turkel Anorthosite Complex, Eastern Ghats Province, India.Precambrian Research, 2014 doi: 10.1016/j.precamres.2014.08.003.
    • , , , , and . “Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 2. LA-ICP-MS zircon dating and texturally controlled in-situ monazite dating.Precambrian Research, null (null) doi: 10.1016/j.precamres.2014.05.024.
    • , , , , , and . “Element signatures of subduction-zone fluids. An experimental study of the element partitioning (Dfluid/rock) of natural partly altered igneous rocks from the ODP drilling site 1,256.International Journal of Earth Sciences, null (null) doi: 10.1007/s00531-014-1038-1.
    • , , , and . “Dating Palaeoproterozoic glacial deposits of the Fennoscandian Shield using detrital zircons from the Kola Peninsula, Russia.Precambrian Research, 246 (null): 281295. doi: 10.1016/j.precamres.2014.03.014.
    • , , , , and . . “Origin and age of ultramafic rocks and gabbros in the southern Puna of Argentina: an alleged Ordovician suture revisited.International Journal of Earth Sciences, 103 (4): 10231036. doi: 10.1007/s00531-014-1020-yDO-10.1007/s00531-014-1020-y.
    • , , , and . . “Geochronology, geochemistry and Nd, Sr and Pb isotopes of syn-orogenic granodiorites and granites (Damara orogen, Namibia) — Arc-related plutonism or melting of mafic crustal sources?Lithos, 200–201: 386401. doi: 10.1016/j.lithos.2014.05.002.
    • , , , and . . “Syn-orogenic high-temperature crustal melting: Geochronological and Nd–Sr–Pb isotope constraints from basement-derived granites (Central Damara Orogen, Namibia).Lithos, 192–195: 2138. doi: 10.1016/j.lithos.2014.01.007.
    • , , , , , and . . “Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments.Geochimica et Cosmochimica Acta, 133: 257279. doi: 10.1016/j.gca.2014.02.034.
    • , , , and . . “Geochemical impact evidence and trace element distribution at the K-Pg event bed, J Anomaly Ridge, Newfoundland – IODP Hole U1403B.” contribution to the IODP/ICDP Colloquium, Erlangen
    • , , , and . “Precambrian to Paleozoic zircon record in the Siviez-Mischabel basement (western Swiss Alps).Swiss Journal of Geosciences, 107 (1): 4964. doi: 10.1007/s00015-013-0156-2.
    • , , , , and . “Partial melting of oceanic gabbro triggered by migrating water-rich fluids: A prime example from the Oman ophiolite.” in Tectonic Evolution of the Oman Mountains, Vol.392 of Geological Society Special Publication, edited by H.R. Rollinson, M.P. Searle, I.A. Abbasi and A.Al-Lazki and M.H. Al-Kindi. London: Geological Society of London. doi: 10.1144/SP392.10.
    • , , , , and . “Anatexis of juvenile mafic to intermediate crust - Constraints from major and trace element and SR, ND, PB isotopes of diorites to granites (Damara orogen, Nambia).South African Journal of Geology, 117 (1): 149171. doi: 10.2113/gssajg.117.1.149.
    • , , and . . “Neoarchean and Paleoproterozoic crust formation in the Ubendian Belt of Tanzania: Insights from zircon geochronology and geochemistry.Precambrian Research, 252: 119144. doi: 10.1016/j.precamres.2014.06.020.
    • , , , , and . . “Decompressional anatexis in the migmatite core complex of northern Dabie orogen, eastern China: Petrological evidence and Ti-in-quartz thermobarometry.Lithos, 202–203: 227236. doi: 10.1016/j.lithos.2014.05.024.
    • , , , , and . . “Generation of magnesian, high-K alkali-calcic granites and granodiorites from amphibolitic continental crust in the Damara orogen, Namibia.Lithos, 198–199: 217233. doi: 10.1016/j.lithos.2014.03.033.

    • , , , , , and . “Mineralogical and geochemical constraints on contribution of magma mixing and fractional crystallization to high-Mg adakite-like diorites in eastern Dabie orogen, East China.Lithos, null (null): 118138. doi: 10.1016/j.lithos.2013.04.011.
    • , , , , , , , , , and . “Micro-analytical uranium isotope and chemical investigations of zircon crystals from the Chernobyl "lava" and their nuclear fuel inclusions.Journal of Nuclear Materials, 439 (null): 5156. doi: 10.1016/j.jnucmat.2013.03.031.
    • , , , , and . “Episodic and long-lasting Paleozoic felsic magmatism in the pre-Alpine basement of the Suretta nappe (eastern Swiss Alps).International Journal of Earth Sciences, 102 (8): 20972115. doi: 10.1007/s00531-013-0926-0.
    • , , , and . . “Trace element partitioning between perovskite and kimberlite to carbonatite melt: New experimental constraints.Chemical Geology, 353: 132139. doi: 10.1016/j.chemgeo.2012.03.025.
    • , , , , , , and . . “Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca5(PO4)3Cl) using the flux growth method.Chemistry Central Journal, 7: 56. doi: 10.1186/1752-153X-7-56.
    • , , , , , , and . . “Synthesis of trace element bearing single crystals of Chlor-Apatite (Ca-5(PO4)(3)Cl) using the flux growth method.Chemistry Central Journal, 7 (56) doi: 10.1186/1752-153X-7-56.
    • , , , and . . “Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides.Mineralium Deposita, 48 (1): 115127. doi: 10.1007/s00126-012-0420-9.

    • , , , , , , and . . “Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia.International Journal of Geosciences, 3 (2): 289. doi: 10.4236/ijg.2012.32030.
    • , , , and . . “Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies.Journal of Metamorphic Geology, 30 (4): 397412. doi: 10.1111/j.1525-1314.2012.00972.x.
    • , , and . . “U-Pb dating of zircon by laser ablation ICP-MS: recent improvements and new insights.European Journal of Mineralogy, 24 (1): 521. doi: 10.1127/0935-1221/2012/0024-2170.
    • , , , , , and . . “Major geological cycles substantiated by U-Pb ages and epsilon Hf-i of detrital zircon grains from the Lower Rhine Basin.Chemical Geology, 294: 6374. doi: 10.1016/j.chemgeo.2011.11.007.
    • , , , , , , and . . “Origin of Meso-Proterozoic post-collisional leucogranite suites (Kaokoveld, Namibia): constraints from geochronology and Nd, Sr, Hf, and Pb isotopes.Contributions to Mineralogy and Petrology, 163 (1): 117. doi: 10.1007/s00410-011-0655-y.

    • , , , , , , , , , and . . “Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269 (24): 30673073. doi: 10.1016/j.nimb.2011.04.061.
    • , , , , , and . . “Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: The Kadavur anorthosite complex, southern India.Chemical Geology, 290 (3-4): 177188. doi: 10.1016/j.chemgeo.2011.09.013.
    • , , , , , , and . . “Neoarchean high-pressure margarite-phengitic muscovite-chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite-chlorite schists from the Bundelkhand craton, north central India.Contributions to Mineralogy and Petrology, 161 (4): 511530. doi: 10.1007/s00410-010-0546-7.
    • , , , , , , , , and . . “DETRITAL QUARTZ AND ZIRCON COMBINED: THE PRODUCTION OF MATURE SAND WITH SHORT TRANSPORTATION PATHS ALONG THE CAMBRIAN WEST GONDWANA MARGIN, NORTHWESTERN ARGENTINA.Journal of Sedimentary Research, 81 (3-4): 284298. doi: 10.2110/jsr.2011.23.
    • , , and . . “The genesis of deep-mantle xenocrystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite): trace-element patterns.European Journal of Mineralogy, 23 (2): 241255. doi: 10.1127/0935-1221/2011/0023-2088.
    • , , , and . . “The Chicxulub ejecta deposit at Demerara Rise (western Atlantic): Dissecting the geochemical anomaly using laser ablation-mass spectrometry.Geology, 39 (3): 279282. doi: 10.1130/G31599.1.
    • , , , , , and . . “High gold concentrations in sulphide-bearing magma under oxidizing conditions.Nature Geoscience, 4 (2): 112115. doi: 10.1038/ngeo1042.

    • , , , , and . . “Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi.Contributions to Mineralogy and Petrology, 160 (6): 909930. doi: 10.1007/s00410-010-0514-2.
    • , , , , , , and . . “Neoproterozoic Provenance analysis and tectonic setting of the Taoudeni Basin, Northern Mauritania.” contribution to the EGU, Vienna
    • , , , , , , and . . “Geodynamic evolution of the early Paleozoic Western Gondwana margin 14 degrees-17 degrees S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia.Gondwana Research, 18 (2-3): 370384. doi: 10.1016/j.gr.2010.02.002.
    • , , , , , and . . “Aqueous corrosion of borosilicate glass under acidic conditions: A new corrosion mechanism.Journal of Non-Crystalline Solids, 356 (28-30): 14581465. doi: 10.1016/j.jnoncrysol.2010.04.033.
    • , , , , and . . “Zircon geochronology and trace element characteristics of eclogites and granulites from the Orlica-Snieznik complex, Bohemian Massif.Geological Magazine, 147 (3): 339362. doi: 10.1017/S0016756809990665.
    • , , and . . “Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis.Earth and Planetary Science Letters, 293 (3-4): 321330. doi: 10.1016/j.epsl.2010.02.047.

    • , , , , and . . “Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism.Lithos, 112 (3-4): 236246. doi: 10.1016/j.lithos.2009.02.005.
    • , , , , , , , and . . “A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous-Paleogene (K-Pg) boundary, Demerara Rise, western Atlantic.Geochimica et Cosmochimica Acta, 73 (4): 11801204. doi: 10.1016/j.gca.2008.11.011.

    • , , , , , and . . “Mineral replacement during scapolitization.” contribution to the International Geological Congress, Oslo, Norway N/A: Selbstverlag / Eigenverlag.
    • , , , , , and . . “The Earth's missing lead may not be in the core.Nature, 456 (7218): 8992. doi: 10.1038/nature07375.

    • , , , , and . . “Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).Contributions to Mineralogy and Petrology, 154 (5): 607617. doi: 10.1007/s00410-007-0212-x.
    • , , , , , , and . . “High precision lu-hf geochronology of eocene eclogite-facies rocks from syros, cyclades, Greece.Chemical Geology, 243 (1-2): 1635. doi: 10.1016/j.chemgeo.2007.04.008.
    • , , , and . . “Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages.Chemical Geology, 241 (1-2): 2337. doi: 10.1016/j.chemgeo.2007.02.008.
    • , , , , and . . “Formation of Pt, Pd and Ni tellurides: experiments in sulfide-telluride systems.Contributions to Mineralogy and Petrology, 153 (5): 577591. doi: 10.1007/s00410-006-0163-7.
    • , , , and . . “The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros.Contributions to Mineralogy and Petrology, 153 (1): 6784. doi: 10.1007/s00410-006-0135-y.

    • , , , , and . . “Fractionation of the noble metals by physical processes.Contributions to Mineralogy and Petrology, 152 (6): 667684. doi: 10.1007/s00410-006-0126-z.
    • , , , and . . “Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany.Journal of Petrology, 47 (8): 16371671. doi: 10.1093/petrology/egl023.

    • , , , , , , , , and . . “Experimental hydrothermal alteration of crystalline and radiation-damaged pyrochlore.Journal of Nuclear Materials, 344 (1-3): 1723. doi: 10.1016/j.jnucmat.2005.04.009.
    • , , and . . “An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa.Journal of Petrology, 46 (1): 135167.

    • , , , , and . . “Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between nature and experiment.Mineralogical Magazine, 68 (6): 905922. doi: 10.1180/0026461046860230.
    • , , , , , , , , , and . . “Periodic precipitation pattern formation in hydrothermally treated metamict zircon.American Mineralogist, 89 (8-9): 13411347.

    • , , and . . “An experimental study on the shallow-level migmatization of ferrogabbros from the Fuerteventura Basal Complex, Canary Islands.Lithos, 69 (3-4): 105125.

    • , , , , , , , and . . “A combined rapid-quench and H-2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts.American Mineralogist, 87 (11-12): 17171726.

    • , , and . . “Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano.Contributions to Mineralogy and Petrology, 140 (4): 469486.