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In this contribution we present efficient numerical multiscale methods for flow
in heterogeneous porous media, in particular also in situations where the result-
ing equations are to be solved repeatedly for varying parameters, as e.g. in the
context of uncertainty quantification, time dependent scenarios or optimal con-
trol problems. We discuss a posteriori based discretization methods and suggest
a suitable conceptual approach for an efficient numerical treatment of parameter-
ized variational multiscale problems where the parameters are either chosen from
a low dimensional parameter space or consists of parameter functions from some
compact low dimensional manifold that is embedded in some high dimensional
or even infinite dimensional function space. Our general approach [14] covers a
large class of numerical multi-scale schemes based on an additive splitting of func-
tion spaces into macroscopic and fine scale contributions combined with a tensor
decomposition of function spaces in the context of multi query applications.

In detail, let U, V denote suitable function spaces over a domain Ω ⊂ Rd and
let us look at solutions uεµ ∈ U of parameterized variational problems of the form

Rε
µ[uεµ](v) = 0 ∀v ∈ V.

with an ε and µ-dependent mapping Rε
µ : U → V ′ where ε denotes a parameter

that indicates the multiscale character of the problem, and µ : Ω → Rp, p ∈ N
denotes a vector of parameter functions that do not depend on ε.

Numerical multiscale methods make use of a possible separation of scales in the
underlying problem. The macroscopic scale is defined by a priori chosen macro-
scopic approximation spaces UH ⊂ U, VH ⊂ V , typically chosen as piecewise
polynomial functions on a uniform coarse partition TH of Ω. The fine scale in
the multiscale problem is usually defined by a priori chosen microscopic approx-
imation spaces Uh ⊂ U, Vh ⊂ V , also typically chosen as piecewise polynomial
functions on a uniform fine partition Th of Ω. For suitable choices of polynomial
degrees and meshes the spaces should satisfy UH ⊂ Uh ⊂ U , and VH ⊂ Vh ⊂ V ,
respectively. In this setting, let us denote with πUH : U → UH , πVH : V → VH
projections into the coarse spaces. We then define fine parts of Uh, or Vh through

Uf,h := {uh ∈ Uh : πUH (uh) = 0}, Vf,h := {vh ∈ Vh : πVH (vh) = 0}.

The discrete solution uεµ,h ∈ Uh is then defined through its decomposition
uεµ,h = uH + uf,h ∈ UH ⊕ Uf,h, satisfying

Rε
µ[uH + uf,h](vH) = 0 ∀vH ∈ VH ,(1)

Rε
µ[uH + uf,h](vf,h) = 0 ∀vf,h ∈ Vf,h.(2)

In a further step, a localization of the fine scale correction uf,h is obtained.
Thus, let a coarse partition TH of Ω and macroscopic discrete function spaces
UH(TH), VH(TH) be given, e.g. by choosing globally continuous, piecewise poly-
nomial finite element spaces on TH . Furthermore, we choose quadrature rules
(ωT,q, xT,q)

Q
q=1 for T ∈ TH and associate with each quadrature point xT,q a local
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function space U δ
f,xT,q

which might e.g. be given as

U δ
f,xT,q

:= {uf,xT,q = uf,h|Y δ(xT,q) : uf,h ∈ Uf,h)}

where Y δ(xT,q) is an appropriate discrete δ-environment of xT,q that can be de-
composed with elements from the fine mesh Th. Local function spaces V δ

f,xT,q
are

defined analogously.
Next, we define local corrector operators QxT,q : UH → U δ

f,xT,q
through an

appropriate localization of 2, e.g.

Rε
µ[uH +QxT,q(uH)](vf,xT,q) = 0 ∀vf,xT,q ∈ V δ

f,xT,q
.(3)

A corresponding local reconstruction operator RxT,q is then given as

RxT,q(uH) = uH +QxT,q(uH)(4)

and we obtain the overall method using numerical quadrature in the coarse scale
equation (1) and by replacing uH + uf,h in (1) by the localized reconstruction
RxT,q(uH). Depending on the choice of trail and test functions, and on the choice
of specific localizations of the function space for the fine scale correctors and
by choosing corresponding localized corrector operators a variety of numerical
multiscale methods can be recovered. For a detailed derivation of the multi-
scale finite element method (MsFEM), the variational multiscale method, and
the heterogeneous multiscale method (HMM) in such a framework we refer to
the expositions in [6] and [12]. We in particular focus on a posteriori error esti-
mation and adaptivity for HMM approximations of elliptic problems [13, 7] and
for approximation of immiscible two phase flow in porous media [9, 10]. We also
refer to [9] for homogenization of degenerate two phase flow in porous media in
a more complex situation where also jumps in the capillary pressure and relative
permeability curves on the fine scale are allowed. Finally, we present an a pos-
teriori error estimate for MsFEM that in particular is able to measure the error
due to oversampling in heterogeneous scenarios [8].

To efficiently cope with two phase flow in porous media in multi-query scenar-
ios, we introduce the reduced basis approach [5] with extensions for non-linear
PDEs, based on the concept of empirical operator interpolation [3]. Numeri-
cal experiments are given for two phase flow in porous media [4]. Finally, we
present a generalization of the classical projection based reduced basis approach
to efficiently cope with multiscale problems in multi-query scenarios. Let thus
suppose that in a first step we have computed snapshots, i.e. solutions uεµ,h
with our favorite numerical multiscale method for suitable chosen parameters
µi, i = 1, . . . , N . The choice of suitable parameters may for example be done by
a Greedy algorithm based on efficient a posteriori error estimates. Let us denote
ΦN a orthogonalized Basis of VN := span(µi, i = 1, . . . , N). The classical reduced
basis approach is based on approximating solutions by linear expansions of the
form uεµ,N(x) =

∑N
i=1 aiφi(x), x ∈ Ω. Hence, the spatial variation of the solution is

represented by the globally defined basis functions only. Here, we apply a general-
ization of this approach (see [14]) by replacing the linear combination of reduced

basis functions by the nonlinear combination uεµ,N =
∑N

i=1 ai(x)φi(x), with the
hope to significantly reduce the number N of reduced basis functions needed to
represent the solution manifold of the underlying parameterized problem. Here
the coefficients ai are now supposed to be macroscopic functions that are able to
take care of the macroscopic spatial variation of the solution manifold. Let us for
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instance assume ai ∈ UH , while φi ∈ VN ⊂ Uh. The reduced multiscale solution
space is then given as UH,N := {uH,N(x) =

∑N
i=1 ai(x)φi(x)|ai ∈ UH , φi ∈ ΦN}

and a corresponding reduced scheme is obtained by suitable projection of the
original problem onto such function spaces.

Particular realizations of this approach are the local reduced basis discontinu-
ous Galerkin method [11] and the localized reduced basis multiscale method [2],
but also other approaches such as the mixed multiscale finite element method
using limited global information [1], the generalized finite element method or
partition of unity methods fit into this framework.

Numerical experiments are given to demonstrate the efficiency of the new ap-
proach.
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